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This report describes a methodology and means for accurately
determining confidence limits for the reliability of large digital
logic networks, without exhaustively exercising all possible input
sequences or simulating all logic faults in the network. The re-
port is divided into two parts. In the first part, some mathemat-
ical models to estimate the reliability of digital circuits are
presented. A heuristic method of assigning weights to faults de-
pending on their "importance"” in a given circuit is described.

The models presented can be used to: (a) predict the reliability
of a circuit, (b) evaluate test sequences and (c) develop more
accurate reliability models of (redundant) fault tolerant compu-

ters. The second part of the report.deals with the statistical
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Chapter 1
INTRODUCTION

With the increased complexity of current digital systems, reliability
considerations have become increasingly important. Being physical devices,
digital circuits are subject to failure. Although current technologies em~
ployed to construct digital systems are more reliable than earlier tech-
nologies, to a great extent the resulting decrease in the failure rate of

individual components has been offset by the increased complexity of today's

circuits. This is one of the main reasons for the increased interest, both

in industry and academia, in the subjects of maintenance and reliability of

digital systems.

4 A fault or failure of a digital network can be defined as a physical
defect of one or more components in the network which causes it to behave
differently from the original systems (Su [74]). 1In digital systems, typ-
ical maintenance goals deal with the rapid detection, location and repair
of any system faults. In many digital systems involving real-time process-

] es, such as telephone switching networks and aircraft or spacecraft flight

controls, it is desirable to continuously monitor, exercise and test the

system in order to determine whether the system is performing as desired.

- Such monitoring may enable automatic detection of failures via periodic

testing or through the use of codes and checking circuits (e.g. self-test-

R R abAat is B

ing and self-checking circuits) or may enable continuous operation under
failure (i.e., fault tolerence) and automatic repair via switching networks
(e.g. stand-by spares).

One way to determine whether a fault exists in a circuit is to exercise

LT NI AN e T s P e e Ty

the network against all possible input sequences and compare the results with

expected output. A second method is to insert faults, physical or modelled,




into a copy of the network, then generate tests that detect the presence of

these faults. For a complex digital system such as an airborne computer,
it is not only impossible to apply all possible input sequences but also
impractical to model all possible faults. A more practical and accepted
approach is to generate input patterns that detect a certain percent of
faults. The generation and evaluation of such test sequences have been

the subjects of much investigation (see for example Friedman [71] or Breuer

(761).

As the average number of IC's on a board increases, the difficulty of
adequately testing the board increases, perhaps exponentially. It can be
shown that with normal rejectionrates of incoming IC's, boards of 50 to 100
IC's will always contain at least one bad IC prior to testing (Fike [72]).

As things stand now, checking out a $10 microprocessor chip may re~
quire an investment by the user of upwards of 1000 times that amount in
test gear (e.g. Fairchild's Sentry VII) - and he still may not know if the
chip will do the job it is supposed to do (Vodovoz [75]). Both user and
manufacturer come face to face with the problems of seeing if the chips
work and at this moment, no one is fully satisfied with present chip check-
out techniques., The hardest hit, though, is the end user who measures his
chip needs in hundreds, and who can not afford the sophisticated test equip- ;
ment that can give him better answers than those he gets with his own home
brewed test methods. i

Two truisms must be recognized at this point:

1. Testing does not add to product quality, it merely evaluates the quality
already present.
2. The test function normally requires a larger expenditure for equipment

than needed for any other part of the production organization.

2




Another way of expressing the first statement is to say that the qual-
ity must be built in through use of good components and good workmanship.
The second statement indicates that the question of the amount of testing
to be performed must be very carefully considered and answered. The amount
of testing which should be performed is that minimum which clearly demon-
strates that the product performs or fails to perform as specified. This
rather vague definition must be expanded greatly so that all responsible
personnel have a reasonably accurate concept as to what constitutes a 'pro-
per minimum test' and also what constitutes the economics of testing. One
such attempt appeared in Watkins [70].

Most users demand that the test equipment detect troubles which are
not present at the time of testing but which may occur at some future time.
To achieve such tight tolerences, one has to test his system on a regular
basis. The cost of such testing can be prohibitively expensive. So, we
need a procedure which enables the end user to evaluate the trade-offs
between the frequency of testing (consequently, the cost of testing) and
the "confidence" he can have in his system. This is the subject of ocur
investigations.

This report describes a methodology and means for accurately deter-
mining confidence limits for the reliability of large digital logic net-
works, without exhaustively exercising all possible input sequences or
simulating all logic faults in the network. This report is divided into
two parts. In the first part, sbme mathematical models to estimate the
reliability of digital circuits are presented. A heuristic method of as-
signing weights to faults depending on their "importance" in a given cir-
cuit is described. The models presented can be used to

1. predict the reliability of a circuit




2. evaluate test sequences

3. develop more accurate reliability models of (redundant) fault tolerent

computers.

The second part deals with the statistical methods of estimating confi-

dence limits.
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Chapter II

TEST SEQUENCES

Test generation is the process of finding the set of input patterns
for a digital circuit which will either verify that the circuit is operat-
ing correctly or else provide some information on the nature of the failure.
The set of such input patterns is often designated as a test sequence (or
simply, a test). It is desirable that the test

1. be reasonable in size

2. Dbe produced at reasonable expense, and yet,
3. detect a maximum number of faults.

Many algorithms have been proposed for generating tests for digital
circuits. Some of the procedures make use of an algebraic description of

the circuit under consideration. Others directly utilize the gate level

circuit topology and functional description. In this sectioﬁ we will sur-
vey briefly some of these algorithms. In almost all these studies, a com-
mon assumption is that a logic element can only fail by sticking at zero

or by sticking at one.

The test generation procedures that have been evolved so far can be
broadly classified as either deterministic or probabilistic. Examples of
deterministic techniques include the Boolean difference method (Sellars [68]), the
one dimensional path sensitization method (Armstrong {66]) and D-algorithm

(Roth [66]1). All of these methods offer high fault coverage (i.e., each

test pattern detects a loarge number of faults) and reasonable size test
sequences. But, they are computationally complex and limited to special

classes of circuits. For example, the D-algorithm uses cubical algebra and




requires extensive programming to automate the procedure. Moreover, the D-
algorithm is originally designed for combinational circuits. Extensions

to these methods to handle sequential circuits have evolved in recent
years, but the complexity prohibits their use.

In the random technique, a candidate test is chosen using a random
number generator. If the candidate test detects new faults not detected
by previous tests, it is added to the test set; otherwise it is discarded.
The figure of merit of a candidate test can be defined as the ratio of the
number of new faults detected to the number of faults to be detected. A
candidate test may be discarded if its figure of merit is less than a spec-
ified threshold value.

There are two major categories of Automatic Test Equipments (ATE), call-
ed stored program ATE and comparison ATE. Stored program testers usually

contain a mini computer and back-up storage as disk and test sequences stor-

ed vector by vector or as a high level program interpreted by the computer. The

gtored program ATE typically also stores the responses and a fault diction-
ary, which are usually generated by simulation. The actual test sequences
can be obtained using either a deterministic or random procedure.

Comparison ATE employspseudo-random patterns as test vectors. Here
two circuits, the Unit Under Test (UUT) and a known good copy of the circuit

{denoted by c*) are inserted into the ATE (Figure 1).




ai

v MO L b SR < e S e .. R

— e ey

Pattern (ﬁiscrepancy
Generator

|Detector

l_Aj____

—

A Known Good
Circuit C*

L

Figure 1. Comparison ATE

The pattern generator applies several million pseudo random patterns to both
the UUT and C*. The outputs of the circuits are then compared by the discrep-
ancy detector. A mismatch indicates a fault in UUT. The advantages of com~
parison type ATE are 1. very fast generation of test patterns, 2. absence
of an expensive computer and storage. However, a known good copy of the cir-
cuit is needed.

Although random test patterns can be generated very inexpemsively, this
technique becomes progressively inefficient when attempting to detect more
deeply embedded faults (Parker [75a]). Adaptive (Parker [75a]) and Weighted
(Schnurmann (75]) random test generations have been developed to improve the
efficiency of random test generatiom.

For a complex digital network, ome is usually satisfied with tests that
detect a certain percent of the modelled faults (say 952). As this number
approaches 1007, the number of input patterns required to detect these faults

approaches a very large number. So, most end users are satisfied with tests

that check a percentage of faults.




Let G denote the set of all modelled faults and let Q be the set of

faults an user want to detect (Q<G). Typically, if an end user is satis-
fied with tests that detect 95% of the modelled faults, then 95% of G cons&i-
tutes Q. A test sequence T is then generated to detect the faults in Q

and the circuit is exercised against all the input patterns in T periodical-
ly to assure reliable operation of the circuit.

Let T1, T2,...,Tn be a number of test sequences detecting faults in Ql,
Q2,...,0n where each Qi is 95% (or any given percent) of G. The actual set
of faults detected by each of these tests Ti can be determined before hand
by probing. By using a fault dictionary, a fault may be identified with-
in its equivalent class. The set of physical faults associated with this
equivalent class may be distributed over many components, such as IC's. 1Im
order to determine the exact location of a physical fault, probing techniques
are required. It should be clear that by interchanging these test Ti peri-
odically, say fl during the first testing, T2 when the circuit is tested
second time and so on, the reliability associated with the circuit can be

enhanced appreciably (Figure 2).

Figure 2. Sets of Faults




PROBABILITY OF DETECTING A FAULT

Parker [75b] has defined signal probability as follows:

Definition: The probability of a signal denoted as
a = P(A=1) (1)

for a signal A is the probability that signal A equals 1. Similarly,

the probability that the signal equals 0 is given by
P(A=0) = 1 -P(A=l) = 1 -a (2)

Boolean operations NOT, AND, OR can be applied on probabilities.

(a) Boolean Negation (NOT) corresponds to the probability expression
b = 1-a (3)

(b) Boolean AND of two independent signals A and B in the expression C =
A.B corresponds to the probability expression

c = a-*b 4)

(c) Boolean OR of two independent signals A and B in the expression C =

A + B corresponds to the probability expression
c = a+b (5)

Let f£(x1,x2,...,xn) denote the function realized by a combinational
circuit. A logical fault a changes the function realized to fa (x1,x2,...
xn). Using the theory of boolean difference metho¢ (Sellers [68]), the
fault a is detected by an inpat for which f + fc is 1. Using the probabil-
ity expression for NOT, AND, OR operations, the probability P(f + f“ =]1) can

be evaluated as a function of the input signal probabilities. This is the

probability that fault o will be detected. It is often convenient to assign



5 equal probabilities to input signals. This is known as bundling (Parker
[75¢]).

To see how the probability of detecting a fault can be used in random
testing let us consider the circuit in Figure 3.

A . ;———‘.

f = A(B+C) + BC

— —p
c » T |

(6)

£ = ABC + ABC + ABC + ABC (6)
Figure 3 An Example - Probability of detecting a fault.

Let a be the fault that A is stuck at 1. Then

£, (A,B,C) =B +C M
£+ £ = BC + ABC (8)
P(f + £, = 1) =b + ¢ - ac - 2bc + abe 9)

Assuming equal probabilities to a, b, and ¢, i.e.,

a=b=c=x
the probability of detecting fault o is given by

P(E+E =1) = 2x- Ix% + X0 (10)

Since x is a probability, the above function is plotted for values of x

between 0 and 1.

10




0.4

This function P(f + fa = 1) in terms of the input signal probabilities
can be used to evaluate the values cf the input signal probabilities for
any desired probability of detecting the fault a. Theses values can be
used to control the random input patterns generated leading to adoptive
test generation. For example, from the above plot, the input signal prob-
abilities (i.e., x) must be set to 0.4 in order to achieve a probability

of detecting the fault of 0.4.

DEPENDENCY OF RANDOM TEST GENERATION ON THE LOGIC DEPTH

The Monte Carlo method was used extensively for testing the circuits of

ILLIAC IV (Moreno [72], Agrawal [72]). Some of the interesting results
obtained during the testing are given here. It was found that a circuit
with 437 lines was completely tested (all s.a.0 and s.a.l faults with sin-
gle fault assumption) with 56 random input patterns. Another circuit with
89 lines required 210 patterns for complete testing while for a third cir-
cuit with 115 lines, the test generation was not complete even after 2000

patterns. These results lead to the conclusion that the computation time

does not depend only on the number of lines or faults. Agrawal [75a] showed




that the number of random inputs required for a complete test of a circuit
depends on the logic depth, i.e., the number of levels in the circuit. 1In
Agrawal [75b], an expression for the probability of semsitizing a path upto
the primary output through L levels, P(L) is derived. Then, the probability
of sensitizing a path through L levels by at least one out of M independent

patterns P(L,M) is given by
PLM) = 1-([1-p@I® (11)

Solving the above equation for M,

M = log[l - P(L,M)] . (12)

log(l - P(L)]

This equation can be used to estimate the number of random input patterns
required to detect all faults in a circuit.

Experimental results have shown that equation (12) gives a good estimate
of the number of random input patterns required for a complete check of com-
binational circuits (Agrawal [75b]). Although these results are derived for
simple tree structures consisting of n input NAND gates, the model can be
applied to any combinational circuit since an equivalent NAND treea can be

constructed for the given circuit very easily.

CONFIDENCE LEVEL

In Agrawal [75b], the term confidence is used to mean the probability
of sensitizing a path through L levels by at least one of the M random in-
put patterns in a test set. Another way of describing this meaning is to
say that the confidence of a test sequence is the probability of detecting
a fault since a fault is detected if a path from the site of the fault to

a primary output can be sensitized.

12




In another attempt to define confidence level, Shedletsky [77] derived

an expression for latency intervals in a circuit., Error latency can be de-

fined as the delay between the occurrence of a fault and the first error in

the output. Latency interval of a circuit is the maximum of the minimum

number of input patterns necessary to achieve a given probability of detect-
ing a fault. Shedletsky notes that the required length of a random test
(i.e., the number of input sequences) to achieve a given confidence level
is equal to the latency interval of the circuit. A more detailed discussion
of error latency is included in a later section. Thus, in this definition,
confidence level is related to the number of test patterns in that test set.
In both of the above attempts, confidence level is defined in terms of
a test sequences. However, a more useful definition of confidence level
should relate to the reliability of the circuit itself. A meaningful def-
inition should include mean time between failures (mtbf) of the circuit due
to logical and physical faults. Such a definition can be used to schedule
periodic check-outs in order to achieve a desired confidence in the circuit.
In the next section two definitions of reliability are given. The authors

believe that these definitions are more useful.

RELTABILITY ASSOCIATED WITH A TEST SEQUENCE

Here two definitions of reliability are presented. The first defini-
tion accounts for the faults that are detected by the test sequence under
consideration. This definition is then extended to include modelled faults
that are not detected by the test sequence and even faults that can not be
modelled.

Definition 1: The reliability RT of a circuit associated with a test se~

quence T which detects the set of faults Q = (gl,g2,...,gn) is a function

13



of time and is given by

o t
Ry = inl [(-R, {o fi-de)]

assuming that the circuit has passed the test T at time tO and where
fi is the probability density function of the fault gi with a mean of

/3y

and ki is a constant which describes the dependence of reliability
RT on the fault gi, 0 < ki < 1.

The term (1 - {; fi-dt) in the above equation gives the probability
that the fault gi does not exist at time t since {; fi-dt is the cumulative
probability that fault gi is present at time t assuming that gi did not
exist at time tO.

Typically, all ki's are set equal to 1, however, an user can bias the
reliability in favor of some of the faults depending on their importance in
his circuit. These constants are in line with the weighted random test pat-
tern generation (Schnurmann [75]) where a weight to each signal is assigned
according to its importance in the circuit.

Equation (13) describes some kind of decay function for Ry and Figure 5
shows the general shape of such a curve. By applying the test T periodically,
the reliability RT can be restored to the maximum (provided the circuit pass-
es the test T each time). In such cases, the curve has a sawtooth form
(Figure 6). The frequency at which the circuit must be tested depends on

the minimum reliability RT’
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Figure 5 Reliability Associated with a Test.
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The above definition takes into account only the faults that are de-
tected by the test T. But, intuitively, it should be obvious that the re-
liability of the circuit should be lower than that predicted by the above

equation due to the faults that are not detected by test T. So, a second

definition of the term reliability is needed.

Let Q3 = (gn+1,gn+2,......,gn) be the set of modelled faults that are
not detected by test sequence T. Let NM = (3nm1’8nm2""""gnml) be the
set of unmodelled faults. Certain physical defects like shorts canm be
modelled as logical faults while some physical defects like changes in vol-
tage and loading can not be modelled as logical faults. Defects that can

not be modelled may effect the performance of the digital system.

Definition 2: The reliability of a circuit associated with a test sequence

T is given by

n t . ¢ nmf t_
RT =[ I (1-ki s fi-de)]l m (Q -kj ST £ de)]{ 1 (1- s fl dt) ]
i=1 to j=n+1 t3 i 2=nml to

where fi, £fj, and fl are the probability demnsity functions,
ki and kj are weighting tonstants as béfore and

t0 is the time the test T was applied last,

tj is the time when a test checked for fault gj and

t-a is the time when the circuit was designated operative.

The first term in equation (l4) is due to the faults (gl,g2,...,g1n)
that are detected by test T. The second term is due to the modelled faults
that are not detected by test T and the third term is due to the unmodelled
faults. The third term may be dropped if the unmodelled faults are not
critical or if the failure rates of such faults are not readily available.

The general form of the reliability curve given by equation (14) is

shown in Rigure 7. When the reliability reaches a value which is not ac-

(14)




ceptable, the circuit must be replaced.

time

The first definition may be used when an user is interested only in
the faults that are detected by his test set. But, if more accurate re-~

liability measures are desired, the second definition should be used.

AN EXAMPLE

The reliability calculations are illustrated using the following

circuit.

A s
: c —_)

Figure 8. An Example
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This circuit has 24 stuck faults under the single fault assumption. This number
is reduced to 10 faults on input signals and 4 faults on branches at fanout
points (g and h stuck faults) using fault collapsing. The table given below

contains 6 input patterns that detect all faults in the circuit.

Inputs Faults Detected

ABCDE
1{ 11010 235.%5,%,%1,%0, %, 11,91 %1, 71 2y ,
2] 01010 a;.%1,%1,81,95,%
3| 10010 b1,%1,%1,81,7

0x
4 x 0 tLo co,do,ho)io,ko,mo

x 0
s | o 4,0l 8,4 9,k ™
6 xx101 eo,ko,mo

Table -1

Let £, = ) e‘lt be the probability density function (pdf) of the
o

fault a stuck at 0. For the sake of this example, we will assume that all
faults have identical pdf's. We will assign a 1 to the weighting constants.

Test set T = (1,3,5) detects 75% of the faults in the circuit.

QT = (a0,al,b0,bl,ec0,cl,dl,el,f0,f1,g0,g1,h1,11,50,351,k1,m0,ml)
Using the first definition,

19

~19it
Rp = gl (- fhe

Ard ) = e

If the mean time between failures (1/)) has a value of 5 X 104 hours, then
-l9x2x10-5

RT - e

For a minimum reliability of 0.9, the time between testings can be calculated:

18
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t = ln(Rp)/(-38 x 10™°) = 277 hours

Sy ——

Thus, the test T should be applied every 277 hours in order to maintain a

reliability of 0.9.
While using the second definition, we will ignore faults that can not

be modelled. The set of faults that are not detected by test set T is

QE = (d0,e0,h0,i0,k0).

Assuming that all faults were tested at time t=0,

19 24 1
t. =-Ar -AT
RT [ 121 (1~ £ Ae "Tdr)]( jI=Izo(1 - e "7dr)]

When A = 2 x 10-5, for a reliability of 0.9, the time between tests is cal-
culated to be t = 219.5 hours.

Table (2) lists few other values for time between test for various

reliabilities.
TABLE 2

Ry MTBF A t7 with lst def. t] with 2nd def.
0.75 50.000 hrs. | 2 x 10™° hr 757 hrs 559 hrs
0.8 50,000 2 x 10°° 587 464
0.9 50,000 2 x 107 277 219.5
0.95 50,000 2 x 107 134 1 107
0.75 90,000 1.14 x 107 1328 1051
0.8 90, 000 1.14 x 107° 1030 815
0.9 90,000 1.14 x 107 486 385 |
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Chapter III @

.

ASSIGNMENT OF WEIGHTS TO FAULTS

i In a microprocessor system or in any digital system, certain faults

:
i

are more crucial to the operation of the system than others. For example,
in most IC's, the enable and power lines are the mest critical faults
on these are fatal to the system. It may be useful to assign
weights to the signals according to their importance in a circuit so
that better reliability measures can be obtained. It is very difficult to
come up with a procedure which assigns absolute values to weights since the
importance of a signal not only depends on its function in a circuit, but
the relative importance of signals may be biased by user views. Here we
attempt to outline a heuristic procedure that enables an user to assign
weights to various faults.

Faults in a digital system may be classified into four groups.

1. Very Important Faults: These faults are very critical to the operation

of the system. It may be useful to include faults whose relative importance
is not entirely clear. This leads to a conservative estimate of the circuit
reliability, but the weights may be changed when the significance of faults
becomes discernible. We can assign a weight of 1 to faults in this class.

2. Important Faults: There may be some faults whose presence impairs the

operation of the circuit but does not create a hazardous outcome. These
faults may become critical to the circuit operation or prolonged existence.
For example, a stuck input in a shift register does not effect the output
immediately, but if the fault remains it may lead to an erroneocus results.

Such faults are assigned a weight of 0.75.

3. Unimportant Faults: Faults in this class may not be critical to the
operation of the circuit at all, even in continued existence. For example,

in most computers, a fault in a clock circuit which changes the cycle time glightly

20
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is not critical to the operation of the system. A weight of 0.5 is assign-

ed to faults in this category. I

4. Don't Care Fault: Some faults may not effect the operation of the cir-

cuit, especially if redundant logic is used. These faults can be ignored in

some é¢ircumstances, and so a weight of 0.0 is assigned to such faults.

R

At this point we would like to draw an analogy from an automobile.

Examples of very important faults include faults in the circuit that con-

trols the brakes, faults in the ignition circuit. A fault in spedometer

or a gasoline indicator can be critical in prolonged existence. A faulty
spare tire can also be classified as an important fault. A failure in the |
heater or air conditioner operation can be classified as unimportant faults. f i

A defect in accessories, such as the radio or clock, can be considered as

a dén't care faults.

BOUNDS ON TIME BETWEEN TESTS

In this section the upper and lower bounds on the time between tests 1
(TBT) are derived. The reliability of a circuit associated with a test set
S drops below the permissible minimum if the circuit is not exercised against
the test set S at least once every TBTmax for that test. Application of a

test more frequently than that indicated by TBT ;, may not be necessary to

maintain the desired reliability.

Let $1,S2,...,Sn be a number of test sequences such that

SIUSZUS3

S, # 84 if 143

U...US. =g
n (15)

Let us consider a test sequence S. Let g be the most important fault among q

the faults detected by S. Let tg denote the time between test for test set S.
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Upper Bound on tg: The maximum value of tg satisfies the following equation

t:S
1-kg [° fgedt = Rpyy (16)

where kg is the weight assigned to fault g, fg is the pdf associated with

g and Rpi, is the minimum acceptable reliability.

Lower Bound on ts: Let Qg = (gl,g2,...gm) be the set of faults detected by
the test set S. Assuming that all the faults are equally important in the
circuit, we can assign a weight of 1 to all faults in Qg. Then, the minimum

value of tg satisfies

T - rs¢ e (17
i=1 o gi Rmin

The actual value of the time between tests for the test set §, ts»
depends on the real values of the weights ky's. If reasonable weights can

not be assigned to faults in a digital system, TBT i, should be used for

scheduling the check=-outs of the circuits.

FAILURE RATES OF VARIOUS FAULTS

Sometimes it may not be practical to calculate the failure rates of
each and every fault in a digital system. In such cases, it is desirable
to classify the faults into various groups depending on either the proxim-

ity of the nature of the failure mechanisms or on the closeness of the

s e

failure rates. Once similar faults are grouped together, identical fail-
ure rates for faults in a group may be assumed. Since the grouping of
faults into various categories impacts the accuracy of the reliability mea-
sures, the classification should be conducted very carefully.

Let Xl,Az,...,An be the failure rates respectively of the faults gl,

g2,...,g0, the modelled faults that are detected by the test T. Let
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A An+2""lr be the respective failure rates of the modelled faults

n+l’

8n+1°8n427 " 28n that are not detected by the test T while Anml’xan""

Anmz are the failure rates of unmodelled faults.

Assuming exponential failure rates, the sum of these failure rates

gives the failure rate of the digital system under consideration.

n T nm{
e ® L M+ T 2 o+ ] AL (18)
i=1 j=n+1 2=nml

Since it is not possible to find the individual failure rates of unmodel-
led faults (or their nature), it is reasonable to conglomerate the failure

rates of ummodelled faults into a single term Anm.

n i
A = IAM + ] A + imm (19)
ckt i=1 jentl

The fault rates of modelled faults may similary be bundled into one or more
groups depending on the similarity of the faults and the required accuracy
of the modal. We will illustrate bundling of faults for LSI circuits.

For LSI circuits it is observed (Tees [71], Kasouf [78]) that the
failure rates of the pins (primary inputs and outputs) are higher than the
failure rates of the gates. This leads to a classification of faults into

3 groups - faults on pins, faults on gates and unmodelled faults. The fail-

ure rate can be written as

ALSI = Apins + Agates + Anm (20)

where xpins is the total failure rate of faults on pins,

Agates is the failure rate due to faults on gates.

Equation (20) is similar to the equations in Tees [71]) and Kasouf [78]

which are of the general form

G +C (21)

A 3

=C

2

1fP +C

LSI

R e eI, i ey
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where P is the number of pins and G is the number of gates in a LSI circuit.
Constant Cl, C2, and C3 are evaluated from the data supplied by the vendor
from his own failure analysis and user feedback. In our case, the model
is similar, but the constants reflect the failure rates of modelled logic
faults on pins and gates. If the values of kpins and Agates in equation
(20) can be obtained, failure rates of individual faults can be calculated
assuming identical fault rates for faults in a group. These failure rates
can then be used to calculate reliability of the circuit and the frequency
of testing to achieve a desired reliability.

Available data about failures in semiconductor devices is typically
of the form, a failures in m hours of operation. This type of data enables
us to estimate the failure rate M.,y of the circuit as a whole. However,
if, in addition to observing that a failure has occurred, the nature of
the fault - a fault on a pin, a fault on a gate or else - is discovered,
we would have data to estimate Apin and Agates in equation (20). If the

bundling results in a different model, the failure rates due to faults in

each group can similary be estimated.




Chapter IV

EXTENSIONS AND SOME OTHER APPLICATIONS

Although equation (20) is derived using the LSI failure mechanism,
this model (equation (19)) can be used for any circuit. For a complex circuit

using a large number of circuits, two extensions of the model are possible.

1.
Aokt = § ‘e * § Mire 3 ¥ Mom (22)
where
Ach_ is the failure rate of IC i considered as one piece.
Awirej is the failure rate of faults on the interconnecting wire
j which depends on the wire length etc.,
Anm is the failure rate of all the other faults.
2. A A + A (23)

ckt pins + Awires + Agates m

where

Apins is the combined failure rate of faults on the pins of

all the IC's.

Awires is the combined failure rate due to the faults on

interconnecting wires.

Agates 1s the combined failure rate of the faults om all
gates.

Anm is the failure rate due to all the other faults.

As noted in the introduction, the model can be used to evaluate test
sequences. Recently, a statistical method for test sequence evaluation is
developed (case [16]). Generation and evaluation of test sequences have been

the subjects of much investigation in the past. But here, test sequence

et s




evaluation is a by-product.

In the previous sections, we have shown how to calculate the reliability
associated with a test sequence. This reliability can be used as a measure
to rank test sequences: a better test will have higher reliability and/or
lower frequency of testing for a given confidence level.

One other possible application is to use our model in deriving reliability
equations for redundant fault-tolerant systems. There have been many mathemati-
cal models developed for redundant systems like triple modular redundant (TMR),
hybrid redundant, and stand-by spare. (See for example Bouricius [71], Mathur
(71]). 1In almost all these studies, a simple exponential function is used to rep-
resent reliability of constituent systems. If the model presented in this report is
used instead of simple exponential distribution, more accurate reliability pre-

dictions can be derived.
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CONFIDENCE INTERVAL FOR THE RELIABILITY RA

As the reliability measure RA defined earlier is decreasing as time in-
creases, we would like to maintain the reliability at some level by applying
the test sequence A periodically. 1In order to find the associated confidence
limit to maintain RA at some given level and finally to present the time inter-
val which is required to check the given circuit periodically, let's define
some terminologies first.

Definition

Confidence level 100 8% (0 < 8 < 1) of the reliability is the percentage
value of the probability such that we are at least 100 BX sure that the reli-
ability is contained in some interval (RL’Ru) which is called the 100 B%Z con-

A
limit of R, respectively. i.e. Prob. [RL <R < Ru] =8,

fidence interval of R, while RL and Ru are called lower and upper confidence

Remark: Frequently one is interested in one-sided confidence interval and the
definition given above can be modified accordingly i.e. if one is interested
in lower confidence limit only (as is the case with us) then Prob. [RL< R] = 8
is the associated probability statement and 100 BZ is called the confidence
level of RA and R, 1is called the (lower) confidence limit of R, etc.

If identical failure rates are assumed among each of QA’ QK and NM, the
reliability RA will eventually be a function of time t with parameter
A= Al-bkz-kls where ll: failure rate for modeled, detected by test seq. A.

AZ: failure rate for modeled, undetected by test seq. A.

A3: failure rate for modeled, unmodeled faults.

i.e. RA - Rl(c; Al,xz,x3) = Rz(t:;)‘) where A ® xl + Az + J\3. (23)

Further assume exponential failure model for each of QA . QK and NM, the para-




meters A

1’ XZ and A3 respectively and assume fajilures in each set QA’QK and NM
occur independently of each other.
Here, one performs an experiment and observes a Poisson process in which
r failures are observed in time t.=nt, where t is the time of termination
of the life test and n is the number of items in the sample subjected to life
test (Type I Censoring See Mann [75]) and r = ritrotr,, where Ti.T, and r, are
the number of faults in QA’QK and NM respectively observed in time interval to.
Let Ki be the random variable of which r, is the realization, 1 = 1,2,3 and

i

let K = K1 + K2 + K3. Since K,'s follow Poisson distribution with parameter 1
Ai t. (see Mann [75]), K also follows Poisson with parameter Atr by the inde- {

pendency assumption of K,'s for 1 = 1, 2 and 3.

i
Let § = n tO/r = trbr and using the identity Prob (K < r)-Prob[x2(2r+2)>2x tr],

where xz(v) is the random variable representing chi-square distribution with %

v degrees of freedom, we can show 100 (l-a)7Z upper confidence limit X for A

2 U
Xi-a (2r+2) 2
is ————— , where xq (v) means q-th quantile of chisquare distribution
2r §

with v degrees of freedom. Here, one can obtain the lower confidence limit RL
to maintain RA at confidence level 100(1l-a)%, since RA is a decreasing function

of v . i.e.

2
xl_a(2r+2)

A

RL = Rz(t;AU) = Rz t; 2e 3
where R, is given in (23)

Further, to find the time period t: required to periodic checking procedure
to maintain the reliability at some given level Rmin’ we can simply use (24)

i.e., t: is the value of t which satisfies the equatiom

2

Xy_q (2742)

= R2 t; - (25)
2r o




*
i.e. 1if we check the given circuit at t° time period, we can at least be

100 (1-a)Z sure that the reliability RA is at least Rmin

Note: Since we do not know the true value of RT’ which is a function of
unknown lj's, it is more realistic to estimate the lower bound of
R, instead of "mean” value of Ry and use the time interval to main-
tain the lower bound of RT' In other words, results in this sec-
tion is more conservative (more frequent checking) compared to the

case in the examples in the appendix at the end of Chapter II.




Chapter V

Point and Interval Estimation for Life Testing
Procedure of LSI/MST Reliability Models - System Point of View

In theoretical studies of equipment reliability, onme is often concern-
ed with systems consisting of many components, each subject to an individual
pattern of malfunction and replacement, and all parts together making up the
failure pattern of the equipment as a whole.

Drenick [1960] showed that a complex piece of equipment, after an extend-~

ed period of operation, will tend to exhibit a failure pattern with an expoen-

tial distribution for the time between failure (inter-arrival times) and that

the time up to the first failure is also nearly exponentially distributed.

Hence LSI/MSI reliability model can be described by expoential demnsity function
f(t)= (1/8)exp(~t/0) (1)

where 8 is the average life time and t is the time to first failure

of LSI/MSI.

One is often interested in estimating 6 or, if mission time tn is speci-
fied, in estimating reliability of an LSI/MSI component R(tp) = 1 - F(t;) where
F(t) is the cumulative distribution function for f£(t). i.e. R(tm) is the pro-
bability of no fault occurs in the given LSI/MSI until time t,-

In the following notes, the estimation procedure of 6 and R(-) will be explain-

ed and demonstrated through examples for the various sampling situations. More-

over the procedure of computing the time period to maintain the given LSI/MSI |
component at the specified reliability level (lower confidence limit for R(-))
is illustrated.

1. Testing without replacement

In the life testing procedure of LSI/MSI, a faulty LSI/MSI is not replac-

ed until the testing is terminated.
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(a) Estimation for Type II cemsoring

Suppose that a sample of size n LSI(MSI) with failure time distributiom
given by (1) has been subjected to life testing and that the test is termina-

ted at the time of the rth failure, r < n. More generally, one might assume

Gk cace

that a sample of size n has been randomly selected from a one-parameter expo-
nential population, and that experimentation is terminated at the time that
r*h obgservation becomes available.

The joint density function of the ordered observations X(l),...x(r),

X(i) < X(i+1), i=l,...,r-1 and r=1,2,...,n is given by
T
£ %, . (x x_ )= n! ex E%ifi:ﬁg:i)xr
X1yt () L X)T TaInyTer FP 6
02 Xie.oS X,

Clearly, if the right-hand side of this is maximized with respect to 8,
one obtains, as the maximum - likelihood estimator (MLE) of 9,

X(i)+(n-r)x(r)
T

r
5.1k

Epstein (1953-1954) showed that 8 is unbiased, sufficient and complete for
8 and because 8 is based on a complete sufficient statistic, it is, by the
Lehmann-Scheffe'-Blackwell theorem, unique minimum-variance estimator (UMVUE)
among unbiased estimator of 6.

Also Var (8) = 82/r.

If we let S, = (n-i+1)(x(i) - x(i_l))/e, i=1,...r, Si has an independent
expoential distribution with scale parameter equal to 1 and it is well known
that 251, i=1,...r, has an independent chi-square distribution with 2 degrees

of freedom.

ittt
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Also one can easily infer that I 2§

j=1 1
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= 2r9/8 (being the sum of r indepen-

dent chi-squares) has a chi-square distribution with 2r degrees of freedom. A

lower confidence bound on 6 at confidence level l-a is therefore given by

2re/xi_a(2r), where x:(k) is the 100 th percentile of a chi-square distribution

with k degrees of freedom. The interval [2ré/x§_a/2(2r), 2re/x§/2(2r)] is a

two-sided confidence interval for 8 at confidence level l-a. To obtain such

t - ~
rRe(e ) =( 1 - B ne s e,

nod

0 , N < t .

tuting 2re/xi_a(2r) for 9 in the expression exp(—tm/

intervals are obtained similarly.

solving for t_.
m

intervals one simply substitutes calculated values for 6 and tabulated values
of chi-square percentile (see example below). The minimum variance unbiased

point estimator of R(tm) for r=n is [See Pugh (1963) and Basu (1964)]

A lower confidence bound for R(tm) at level l-a can be obtained by substi- -

e). Two-sided confidence

These results are summarized in Table I below.
The time period t; to maintain the reliability at a given level, say 8,

can be obtained by equating B with the lower confidence limit for R(tm) and

Table I
parameter point estimate interval estimate
E
X + (n-r) X - R
o jm1 1) (r) 2r8 , 2r9
2 2
r xl_a/Z(Zr) xa/2(2r)
n-1 - "
Ry L-B , absta | expl-ta/l2EE—D
m no - xl-a(Zt)
o , m8 <ty
(lower confidence limit)




Example 1.

Let n=24 LSI(MSI)'s are put in life testing and the test was terminated
at r=3rd failure.

If the observed exponential failure times in hours from the above censor-
ed samples of size 24 are 6200,9200 and 16900 then a=[6.2 + 9.2 + 22(16.9)]1-
103/3 = 129,100 hours. 95% two-sided confidence interval (a2=0,05) is [53605.5,
626040.6]. If mission time t, = 5,000 hours, lower confidence limit for R(tm)
at level .95 (a=.05) with t =5,000 hours is exp (-5000/[2X12231301)- 97 i .e.
we can be at least 957 sure that the reliability is at least .92, To obtain
the time period to maintain the reliability at least B=.95 level, we solve

“tm/6x129100

.95 = exp | 12.59

] and get

*
tp, = 3155.8 i.e. we might have to check the LSI afte: using 3155 hours period-

ically to be 95% sure that the reliability is at least .95,

(b) Estimation for Type I censoring
If a 1ife test is terminated at a specified time t,, the joint p.d.f.
of x(l),...,x(r) is given by
n! r
. ,...,x(r)(xl,...,xr) * Goo)TeT exp {-[.Z X, + (n-r)to]},

(1) i=1
qﬁng...ﬁxripo.

f

The maximum likelihood estimator of 8 {3 easily seen to be

r

2 L W) + (a-n)to
r

, r # 0.

This estimator 1is biased for small samples but has all the desirable

asymptotic properties associated with the MLE of 6 under Type II censoring.
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To obtain a confidence interval for 6, one may consider the probability
that the number of failures, K, in a sample of size n is egual to r at time to®

P(K=t) = Tnan‘;'ﬁ:T [R(to) 17 T [1-R(t,) 1T,

Then a conservative (because K is discrete and the failure times are not

used) lower confidence bound § at level l-a for R(ty,) is given by the solution

of
a n
i‘n-l= =6L§Bi]:.)_.__ n—2'+l_r
izn—r (y)eta-o @ = Jy Tty * (1~x)"dx

From the relationship between the binomial and the beta distributions,

it can be seen that § is equal to
1 - Vl—a (r+1, n-r) = Va(n-r, r+1l), the 100ath percentile of the beta
distribution with parameters n-r and r+l. From this, one can determine, from

R(to)=exp(‘t°/6), a lower confidence bound for 8 at level l-a as ty/1ln(l/§).

Table II
parameter point estimate interval estimate
5 X o/1n(1/6)
8 - igl (1) + (n-1)t, o/1ln
6= r r#0
’ (lower confidence bound) !
R(ty) R(t;.0) 6=Va(n-r, r+l)
(lower)
Example 2.

Sample size n=15 LSI's were put in life testing and the test was termin-
ated at t,=240 days. The number of failures up to time t, were r=2; then a

90 % lowerbconfidence bound for R(to) is .6827 and a 90 to lower confidence

bound for 0 is 240/1n(1/.6827)% 630 days.
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2. Testing with replacement.

(a) GEstimation for Type II censoring

If a life test is performed with replacement and testing is termin-

ated at the time of the rth observed failure, then the joint p.d.f. of

the ordered failure times x(l)""’x(r) is given by

1
1
b

T
fx(l),...,x(r)(xl,...xr)=(nA) exp(-nAxr),0<x

where A = 1,8.

<...<X
1-""""r

From this expression one can obtain the m.L.E. of X as (r/X(r))/n
and of 9 as (nx(r))/r. For this model, one can also write the joint p.d.f.
of x(l),...,x(r) as

r
(ax) Texp[-nA I

. l(xi-xi-l)]’ x°§0<xLi...5xr

. In other words, each Si = Xi-xi-l’ i=1,...,r, with X0, has an inde-

pendent exponential distribution with scale parameter (An)—l. Since X(r) =

r
£ Si, the density of X(r) for testing with replacement is given by
i=]1

r <« n-l

A
L (r-l;! exp (-nix,).

£ (xr)
X(r)

Consequently, ZnAX(r) has a chi-square distribution with 2r degrees

of freedom, and confidence bounds for A ,8 or reliability can be obtained

as functions of observed values X(r) and values to be obtained from tables

of the chi-square distribution.
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Table IIIX

parameter point interval
~ X X

8 g = nx(r)/r ;g (r) 2; (x)

X
1-3(2r) 32r)
N R(t: 2nX(r)
R(t) R(t;8) B2
1-a(2r)

(lower limit)

Example 3

For a sample (with replacement) of size 5 LSI's from an exponential
population for which the first observed failure time is 5600 hours and the
fourth and last observed time, occuring at the termination of the life test,
is 20,000 hours, the MLE for 6 is 5(20,000)/4=25,000 hours and an 80 % lower

confidence bound for 8 is 10(20,000)/X280(8)é18,100 hours.

(b) Estimation for Type I censoring.

In this case, one observe a Poisson process in which r failures are
observed in time t =nty, where t  is the time of termination of the life
test and n is the number of items in the sample subjected to life test.

For this model, the number of observed failures, K, is a random variate with
P(R=r)=(EP) (At ) Texp(~Aty) with A=1/6.

The M.L.E A of A is r/t_ = r/nt, and the MIE 6 of 8 is i_ltnto/r.

then

r 1 k
k=0

o Zr
= thr T exp(-z)dz,

36
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An incomplete gamma function with shape parameter r + 1. Therefore

Prob(K<r) = Prob [x2(2r+2) > 2Aty]. Thus if one observes r failures, then,
with probability at least l-a, 2Ar6<xi_a(2r+2), or 2nt°/x%_a(2r+2) is a con-

servative lower confidence bound for 8 at confidence level 1l-a. Similarly,

it can be shown that
Prob (K>r) = Prob[xz(Zr) 2t ].
Hence a conservative upper confidence bound for 6 at level l-a is given

by 2r§/x§(2r), and a conservative two-sided confidence interval at level

l~a is
28 2r8
X2 (2r42) X2, (2r)
1~a/2'TF ,  “aj2'er

Cox (1953) discusses the interval

. 2ré 2r6
2 2
Xl_a/2(2r+l) , Xa/2(2r+1)

which he states is slightly narrower than that given above but sometimes

has a true confidence coefficient less than l-a.

Table IV
parameter point interval
a 2r8 , 2r6
9 f=nt,/¢ 22 - ;E_-_:;_—
Seas2 4D %520
R(t) R(t) = R(t;8) R(t -2_2_1'.3__.
Xl_a(2r+2)
(lower limit)

Note that R(tie) is an increasing function of 0.
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Example 4

If 200 LSI's are life tested with replacement for 1,000 days and fail-
ures are observed, a 90% lower confidence bound for the mean time to fail-
ure is 400 (1,000)/?30(8)-400,000/13.36 = 29,900 days. As an example in
real life, we illustrate the estimation procedure using the data from G.
Kasouf and S. Mercurio (1978).

Certified data from an airborne radar processing systems (RPS) operat-
ing in a simulated airborne inhabited environment is used to calculate the
observed LSI/MSI failure rate. The certified data was accumulated during
the RPS 1600-hour test-analyze-and-fix program followed by a 351-hour fixed
length reliability demonétration test. Analysis of data shows an accumula-
tion of 3.9 and 4.6 million operating hours for LSI and MSI circuits, respec-
tively. One LSI and no MSI failures were experienced. In this case t.=
(3.9 + 4.6) x 108 = 8.5 x 106 and i=1/(8.5x10%)=0.118/10° hrs and r=1.

60% (a=.4) confidence interval for A(failure rate) is

2 n %2,
= , —— = [.026314 , .35341]

95% lower confidence bound for 6 is

i 108
—fL - 2x0.118 1.78637 x 10° hours
X% g5 (4) 9.488

To obtain the time period to maintain the LSI at B=.98 level, we solve

.98 = exp[-t/(1.78637 x 10%)]
and get
th = 3.609 x 10* hours
i.e. we may have to check the LSI's in 3.6 x 104 hours period to be 95% sure

that the reliability is at least .98.
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Appendix A

STATISTICAL PROPERTIES OF QUASI-RANGE IN SMALL

SAMPLES FROM A GAMMA DENSITY
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Introduction

Karl Pearson [1920], studied combinations of order statistics
which were later named quasi-ranges by Mosteller [1946]. Quasi-ranges
are simple to obtain and, for moderate sample sizes,yield more effi-~
cient estimators of standard deviation than do sample ranges. In cases
where abundant data are available and where the cost of complicated
data reduction far outweighs the cost of sampling, the use of quasi-
range in estimation problems is satisfactory. 1

Quasi-range may be defined as follows, Consider the ordered
sample values Yl, Yz, veny Yn where a < Yl < Y2< see < Yn < b, If the :
r smallest and r largest of these values are deleted, the range of the
remaining (n-2r) values is defined to be the rth quasi-range, Wr. 3
Symbolically,

Wr - Yn-r - Yr+1’ n>2r+1l,b~-a> wr > 0, (1.1)
Note that sample range is simply the quasi-range, Wo.

Many authors have found quasi-ranges to be of particular interest
and have developed numerous applications for them. Among others, Harter
1959] , cadwell [1953], Chu [1957] , Benson [1949] and Ghosal [1957]
have derived estimators based on quasi-range, and Rider [1959] has
studied various quasi-range distribution,

As a natural extension of research first published by Gupta [1960]
regarding the distribution of order statistics from a gamma density, this
study of quasi-range is intended to provide further information needed by
the analyst in applying the methods of simple estimation and inference
that have been developed. It should also be noted that Prescott [1974]
has given variances and covariances of order statistics from the gamma
distribution, Though Tables I, II and IIl show the moments and quantiles

of quasi-range for limited sample sizes and parameter values (n=1(l) 10 and

a = 0(1) 2) only, methods described here can be easily extended.
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Distribution of Quasi-Range in Samples

From A Gamma Density

The density function of the standard gamma distribution with
parameter a is
-1 -
£() = @) eV ¥y (v 20, (2.1)
where a is a non-negative integer. The corresponding cumulative distri-
bution function may be expressed as a partial sum of Poisson probabil~
ities:
@ y.1 :
Fy) =1-1 = (v 20, 2.2)
i=0 *
Let "r be the rth quasi-range from a sample of size n with distri-

bution F(y). It is well known (Harter [1959]) that the distribution of

wr can be expressed in integral form as

n! n=-2r-2

b
0 = TTaaen e [P [Fyw ) - F()]

2.3)
. [1-F(Y+"r)]rf(y)f(y+wr) dy for 0 < wo < b - a,

Substitute (2.2) into (2.3) and let am(a.r) be the coefficient of t"
. a
in the expansion of (jiotj/j!)r (See Prescott [1974]), then (2.3) can be
written as
T i, a1y

$(w ) = n: : (F)-n*t
T e 2a-2r-2) (al)? 1,%0 4

n=-2r-2 i, a1
o ir 2)(_1) 37,3 a
13-0 3 14-0 4
c(n-2r-2-13) asr 17 1
. L a, (a,n-Zr-Z-is) I a, (a,v) L (17)
10 6 1,%0 77 1g=0 g
g i - w_ (i 4+r+l)
A v Battyremtstigly) T3
z i -
o 19 (1,+1 +1_+1_+1_+atl)
1g=0 (ypme) 25 6 89

14
(a,i3) b
i

. (12+15+16+18+19+u)!,wr > 0.
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In order that this expression for the density of Wr be of use, it

can be reduced to the following form,

n-2r-2 -wr(r+j+l) a(j+r+l) Kk
¢(w) = ¢ e I A(,Kw ,w_ >0, (2.5)
r j-O k =0 r r
vhere A(j,k) is the accumulation of all coefficients in (2.4) involving
the 1ike powers of v, and e. This function, which we call the coeffictent
matrix will be used as a notational convenience throughout this paper.

Although it is impossible to express A(j,k) in closed form, we can compute

its numerical value in the summation process of (2,4) by evaluating the

coefficient of [exp{-wf(r+j+1)}] wt where for specified values of n, r and a
k = 14 + 17 +a - 15 - 18 - 19.
Using A(],k). the moment generating function M(t) associated with

quasi-range can be written as

n-2r-2 a(j+r+l)

ALK k!
M(t) = L z L t<rta+l, (2.6)
j=0 k=0 (r+i+l-t)
from which it is easily seen that the ith moment about the origin of

the rth quasi-range is
n-2r~2 a(j+r+l) ; '
uia,ra) = I o AMLOf
j=0 k=0 (r+j+l)

(2.7)
These values along with the ith central moments are tabulated in Table I,
The cumulative distribution functiom for Wr can be obtained from

(2.5) and it may be transformed to a partial sum of Poisson prob-

abilities as

d(w ) = z
r =0 km0  (pejel) <t {=0 1! (2.8)

from which the p-quantile Ep of the density (2.5) can be calculated iter-

1
n-2r-2 a(r-;:-j+1) A(L, 1) k! {1_ xzc [exp{~ w_(r+§+1)}] {w_(r+j+1)} }

atively. A suitable iterative procedure which is quite efficient in com-

puting Ep is given by
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= 8y 7Ry PI(E, _1-€, )/ (PP, ,)s (2.9)

; at the ith iteration, To initiate the pro- :

cess, fairly arbitrary values of 51 and 52 may be chosen and using (2.8) Py

i where ¢(£P) = p and ¢(Ei) =p

and p, can be obtained, These values are tabulated in Table III.

Analysis of Results

Ghosal [1957] has published results of an analysis of quasi-range

distributions associated with samples from an exponential density.
It is well known that the gamma distribution reduces to the exponen- ?

tial distribution when a = 0: hence a limited comparison betwaen i

Ghosal's data and that of this study is possible. Table IV presents
this comparison. It is seen that ui(n,r,a) and uz(n.r,a) from Table I

agree exactly with Ghosal's values, but values from Table II show some

disagreement. Small discrepancies are revealed in the values forNE, and
still larger errors appear for Yoo To find the cause of these differ-
ences, Ghosal's formula was reapplied with more accuracy in each cal- E ?
culation. Exact agreement between data sets was obtained by this proce- E
dure, leading to the conclusion that Table I and II are correct for a = 0.

Gupta [1960] has published tables of central and non~central moments
for the distribution of order statistics in samples from a gamma density.
Thus, it is possible to form a direct comparison between his data and
that of this study. First moments, calculated from Gupta's results,
zé were subtracted from those of Table I with the remainders written as
absolute deviations. Results of this comparison are presented in Table V.
A maximum deviation between the two data sets exists whenn = 10, a = 2,

and r = 3, This discrepancy, amounting to 0.00079, reflects a deviation
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from Gupta's results of 0,06 percent and represents the largest percent
digcrepancy found. Unfortunately, no recommendation based on this anal-
ysis can be made regarding the relative merit of either data set. It
can only be surmised that discrepancies may be due solely to

machine error computation (See Prescott [1974]). Higher moments are not
compared since Gupta's work extends only to the derivation of formulas
for the covariance between Yi and Yj‘ Although these formulas may be used
to calculate quasi-range variance, the amount of work required to

obtain a comparison is considered prohibitive. To obtain still higher

moments, original deviations for covariance between powers of Yn—r and i

E Yr+l are required, a task beyond the scope of this study. To test the
' behavior of error in moments of higher order, an altermative computer pro-
gram was devised that differed from the original only in methods used
to calculate coefficients A(j,k) in equation (2.5). Slightly different
values for ui(n,r,a) were computed, but in general, the discrepancies
y . tend to zero as the order of the moment increased. Two examples of
this phenongenon appear in Table VI,
Another independent test was performed to determine the extent
to which machine error accumulation contributes to overall error. The
' basic machine program used for all computation was revised so as to per-

form calculations in double precision arithmetic; only small differ~

ences less than 0.0001 were detected while computation time increased

by at least a factor of two.

In addition to normal machine error, values in Table III contain
a controlled error introduced by the iteration procedure tolerance limit.
Thus a maximum error of two percent can exist in the lower tails of the:
distribution, since the quoted values of ¢(Q;) may contain as much as

0.0001 error.
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MOMENTS OF

TABLE I

THE QUASI-RANGE DENSITY

u'
1

u!
2

u!
N

u
2

u
3

M
b

Ch

10

LAV I o

W KN HF O W o

& Ww N = O

1.00000
1.50000

1.63333
0.50000

2.06333
0.63333

2.28333
1.08333
0.33333

2.45000
1.28333
0.58333

2.59286
1.45000
0.73333
0.25000

2.71786
1.59206
0.95000
0.45000

2.82897
1.71785
1.09287
0.61666
0.20000

2,00000
3.50000

4,72222
0,50000

5.76309
1.05556

6.67722
1.59722
0,22222

7.49349
2.11056
0.51349
5. 23470
2.59389
0.62722
0.12500

8,91417
3.0k4899
1,14389
0.30500

9,54283
3.47845
1.4561b
0.51055
0.08000

6.00000
11,2500

15.9722
0.75000

20.2951
1.80556

2k, 3015
3.00347
0,22222

28,.0Lgl
L,26931
0.60764

31.5776
5.56675
1.10397
0.09375

34,9204
6.87346
1.67592
0.27675

38,1013
8.17768
2.29998
0.53203
0.0L800

24,0000
L6.5000

67.7963
1.50000

83,0914
3.907k1

107.533
6.91066
0.29630

126.232
10,3267
0.90394

144,276
14,0379
1.78711
0.09375

161.736
17,9656
2.90L439
0.31515

178.670
22,0545

b,21866,

0.66983
0.038k0

1,00000
+25000

1.36111
0.25000

1.42361
0.36111

1,L6361
0.42361
0.11111

1.49139
0.L6361
0.17361

1,51160
0.49139
0.213061
0.06250

1.527h2
0.51130
0.2L139
0.10250

1.53977
0.527h4
0.26178
0.13028

2,00000
2.25000

2.32L07
0.25000

2.35532
0.32407

2.37132
0.35532
0.QTUOT

2.36058
0.37132
0.10532

2.386k1
0.38058
0.12132
0.03125

2.39032
0.386k2
0.13058
0.0k725

2439306
0.39030
0.13643
0.05651
0,01600

9.00000

11,0625

12,0069

0,56250

12.5525
0.84028

12.9086
1.01085
0.11111

13.1595
1.12692
0.18793

13.3458
1.2113

0.2LL00
0.03516

13,4893
1.27505
0.2865h
0.06456

13,6043
1.32531
0.31982
0.08858
0.01k40
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TABLE I

MOMENTS OF THE QUASIRANGE DENSITY

a=1

u'
1

u'
2

ut
3

u!
&4

u
2

Y
3

7
4

10

n - C

w N = O

= W M= O W N K o

1.50000
2.25000

2.7L248
0.77257

3.10019
1.28762

3.39320
1.67117
0.52051

3.62951
1.97529
0.91088

3.82996
2,22641
1.22193
0.39248

4,00373
2,43976
1.47967
0,70647

b,15673
2.62493
1,69910
0.96747
0.31500

L.00000
7.13889

9,70216
1.09722

11,870k
2.3L6k9

13.7526
3.57071
0.50762

15,4183
4. 72806
1.18L09

16.9145
5.81167
1,91420
0.29211

18.2741
6.82L950
2.65170
0.T1717

19,5212
T.77397
3.37648
1.20L47
0.18973

15.0000
29,2500

L2,3L83
2.21094

54.3890
5.k8081

65.5211
9.26752
0.70830

75.8791
13.2999
1.97755

€5.5740
17.4336
3.63859
0.31307

9k.6958
21,5683
5.56665
0.93851

103.318
25.7180
1.67506
1.82215
0,16538

72.0000

147,333

221,44y
5.70833

293.197
15.5015

362,340
28.3012
1.27101

423,936
b3,0566
L,01206
493,103
59,2309
8.11144
0.43306

555,032
76.L0Y8
13.3830
1,L9Lk05

614,375
94,2998
19.6kL06
3.23287
0.18663

1.75000
2.07639

2.18098
0.50036

2,22195
0.68653

2.23860

0.77789
0.23669

2,.2Lk497
0.62631
0.35L38

2.2k592
0.85LT9
0.42110
0.13807

2.2L420
0.872k6
0.46229
0.21806

2.2L107
0.88370
0.48953
0.26846
0.09050

3.75000
3.8L375

3.77775
0.59013

3.71378
0.66630

3.66255
0.70027
0.19768

3.62173
0.69622
0.25338

3.58855
0.68824
0.27048
0.0900L

3.56093
0.67993
0.27L97
0.12374

3,53748
0.67258
0.2TkS5
0.13740
0.0L86O

20,8125
24, 0kob

25,0139
1.73654

25.3323
2,k2653

25,4053
2,78526
0.40126

25,3746
2.98760
0.6362k

25.2978
3,10055
0.78760
0.14036

25,2013
3.18317
0. UEN27
0.2k225

25.09Th
3.22851
0.96067
0.3173L
0.06167
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TABLE I

MOMENTS OF THE QUASI-RANGE DENSITY

=2

1

u

u'
2

Q
8!
3

ul
L

'
2

W
3

u
4

10

N +~ C

N o+ O

e~ O

w N P O W

F w N » O

1.87500
2.01250

3.42544
0.97367

3.87611
1.62279

b,23027
2.10526
0.65779

L, 520062
2.48696
1.15112

L,766L6
2.80134
1.54378
0. 49664

4,97860
3.06784
1.56855
0.89k11

5.16550
3.29047
2.1k4ok
1.22357
0.39892

6.00000
10,7878

14,7036
1.69782

18,0098
3.64635

20,4718
5.55944
0.79518

23.3970
T.36737
1.35785

25,6583
9.05773
3.01072
0. k6066

27.7073
10,6355
L.17317
1.13315

29.5616
12,1102
5.31528
1.90430
0.300kk

26.2500
52.0312

7549551
4,11572

98,0076
10.3094

118,398
17.53L4
1.3536C

137.351
25.2509
3.80536

155,061
33.1679
T.03112
0.60724

171,694
41,1229
10,7850
1.82935

167,384
49,0226
14,8951
3.56196
0.32382

14,000
301.998

460,204
12,5749

61h,61k
3k, 4763

763.998
64,0997
2.92363

904,102
98,1845
9.33924

10L47.05
135.698
19,0292
1,021L1

1181.00
175.614
31.5621
3.55457

1310.56
217.213
46,4916
T.73555
0, blL7u2

2.L8437
2.87765

2,96999
0.T4978

2.98563
1,01290

2,97664
1.12722
0, 36250

2,95919
1.16240
0.53477

2.93914
1.21023
0.62747
0.21397

2,9158k
1,22387
0.68170
0.33372

2.89%21
1.23028
0.T1450
0.40T19
0,14130

5,68359
5.503Th

5.2L149
1.,00251

5,05440
1.10472

4,92076
1.08395
0.3536h

4, 82096
1.04742
0.43328

L,74326
1.01360
0.44589
0.16589

L,63059
0.9€565
0.L43961
0.21943

4,62875
0.96132
0.42902
0.23548
0.09123

36,6086
k0.9339

41.6138
3.50675

k1,.3822
L, 76581

Lo,8910
5.35039
0.86463
LO.3L1L
5.636u3
1.33669

39.5006
5.77345
1.62337
0.31427

39.2926
5.828L9
1.80521
0.52999

38,6224
5.84492
1.92004
0.66LOT
0.1L160
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TABLE II

KURTOSIS AND SKEWNESS OF THE QUASI-RANGE DENSITY

a=0 a =1 a = 2
n r Y Y Y Y Y Y
1 2 1 2 1 2
2 {0 | 2.00000 |6.00000 1.61965 | 3.79592 1.45143 { 2,93129
3 (0| 1.60997 |4.08000 1.28L67 | 2.57601 1,127k6 | 1.94318
N 1.46356 | 3.,48105 1.17289 | 2.25069 1.02%05 | 1,71766
2,00000 | 6.00000 1,06736 | 3.93619 1.5Lkk1s | 3.23766
S |0 | 1.33664 |3.19367 1,12128 | 2.13100 0.97975 | 1.6L4239
1.49342 | 3.44379 1.20124 | 2,10266 1.08368 | 1.6L517
6 1.33922 | 3.02597 1,09335 | 2.06865 0.95817 | 1.61503
1.28876 | 2.63316 1.02066 | 1.60233 0,90572 | 1.21081
2.00000 | 6.,00000 1.71662 | k.16271 1.62036 | 3.561L8
7 1.30706 { 2.91638 1.07672 | 2.03476 0,9L705 | 1.60686
1] 1.17631 | 2.24305 0.92690 | 1.37556 0.31466 | 1.06160
2 | 1.45600 | 3.23520 1.20108 | 2.06615 1.10796 | 1.67L409
8 |0 | 1.26382 | 2.83927 1.06617 | 2.0152¢6 0.9L13L | 1,60732
1| 1.1087 | 2.01580 0.37067 | 1.25L4L 0.76131 ! 0,94183
2| 1.22889 | 2,347L1 0.98082 | 1.L4L167T 0.89710 | 1.,12320
3| 2.00000 | 6,00000 1.75506 | 4,.36257 1.67598 | 3.86L13
9 |0 | 1.2662L | 2,76211 1.05918 | 2.00378 0.93561 | 1.61199
1| 1.05538 | 1.86778 0.83k34 ] 1.18183 0.72798 | 0.89121
2 { 1.10110 | 1.91773 0.87482 | 1,16113 0.7810L4 | 0.88453
3| 1.43985 | 3.1L458 1,21521 { 2,09L471 1.13820 | 1,75881
10/ 0| 1.25248 | 2.73806 1.05441 | 1.,99709 0.93766 | 1,61873
1| 1.01891( 1.76L03 0.8§963 | 1.13L20 0,70bs7 | 0.66165
2| 1.01858 | 1.66689 0.80159 | 1.00888 0.71036 | 0.7611k
3| 1.2017k | 2.21931 0.98776 | 1.40312 0.90628 | 1,12565
4L | 2.00000 | 6,00000 1.78479 | L.52855 1.71765 | 4,09185




QUANTILES OF THE QUASI-RANGE DENSITY

TABLE III

a =0

n r P
0.005 0.010 0.025 0.050 0.100 0.500
210 0.00500 | 0.01002 | 0.02532 | 0,05128 | 0.10529 | 0.69307
310 0.07301 | 0,10538 | 0.17216 | 0.25311 | 0.36013 | 1.22796
4 0.18740 | 0.24300 | 0.34585 | 0.45969 | 0,62398 | 1.57842
0.00250 | 0,00501 | 0.01266 | 0.0256L | 0.0526L | 0.3465L
S| 0 0.30863 | 0.38007 | 0.50671 | 0.64030 | 0.82655 | 1.83811
0.0k213 | 0,06072 | 0.09908 | 0.1h45kk | 0.21791 | 0.69315
6 0.42479 | 0.50748 | 0,6L4990 | 0,79688 | 0.9968L | 2,0kLS1
0.11740 | 0.15207 | 0.21580 | 0.28596 | 0.38639 | 0.95262
0.00167 | 0.,00334 | O0.,008L4 | 0,01709 | 0.03510 | 0.23102
7 0.53375 | 0.6235L | 0.77613 | 0.93379 | 1,14347 | 2.21539
1 0.20479 )} 0.25108 | 0,33334 | 0.419LY | 0,53824 | 1.15804
2 0.02979 | 0,04291 | 0.07000 | 0.10271 | 0.15381 | 0.LyT32
8] 0 0.63195 | 0.72900 | 0.89250 | 1.05498 | 1.27163 | 2.36134
1 0.29324 | 0,343k3 1 O,LL390 | 0.54159 | 0.67272 | 1.33003
2 0.06629 | G.111%3 | 0.15655 | 0.20991 | 0.28325 | 0.6931k
3 0.00125 | 0.00251 | 0.00633 | 0.012862 | 0.02632 | 0.17327
9! 0 0.72437 | 0.42553 | 0.99556 | 1.16351 | 1,36586 | 2.48897
1 0.37824 | Q.L4069 | 0,54690 | 0.65251 | 0.792B1 | 1.uT7626
2 0.15514 | 0.18993 | 0.25139 | 0.31653 | 0.40525 | 0.36k41k
3 0.02307 | 0.03323 | 0,054k21 | 0.07952 | 0.11905 | 0.37660
10| o 0.81127 | 0.91547 | 1.08982 | 1,26206 | 1.48857 | 2.60200
1 0.45961 | 0.52729 | 0.6L153 | 0.75352 | 0.90082 | 1.60383
2 0.22698 | 0.26926 | 0,34294 | 0,41730 | 0,51714 | 1.01016
3 0.06841 | 0,08868 | 0.12568 | 0.16633 | 0.,22431 | 0.54716
b 0.00100 | 0.00200 | 0.00506 | 0.01026 | 0.03106 | 0.13861
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TABLE III

QUANTILES OF THE QUASI-RANGE DENSITY

a =0
P

r 0.900 0,950 0.975 0.990 0.995
0 2.302L0 2.99567 3.68L98 L, 60437 5.29340
0 2.96973 3.67609 L.37217 5.29507 5.98538
3.36629 4L,07731 4.T77571 5.69972 6.390L7
1.15120 1.49784 1.84240 2.30219 2.64670

0 3.6L4978 L, 36286 5,06246 5.98700 6.67793
1.63025 1.99957 2.3%957 2.43150 3.1€208
3.86992 b,5¢282 5.26502 6.20791 6.90103
1.94796 2.32575 2.69276 3.16970 3.52290
0.76ThLT 0.996506 1.02832 1.53478 1.76Lks
0 L,oL9g91 L,70L30 5.46700 6.39209 7.08331
1 2.156698 2.57036 2.94078 3.42061 3.77512
2 1.137T4 1.39188 1.6381L 1.95970 2.19767
0 | 4.20322 | 4,91802 | 5.62091 | 6.S5L613 23741
1 2.37942 2.76629 3.13630 3.62038 3.9757G
2 1.39982 1.66400 1.91877 2.2L750 2. 48900
3 0.57560 0.7L892 0.02126 1.15113 1.32342
0 | b4.33661 | 5.05119 | S5.75431 | 6.867967 | 7.371l1
1 2.54087 2.92966 3.30377 3.78656 L, 14252
2 1.60483 1.87563 2.13L497 2.46779 2.71177
3| 0.87661 | 1.07119 | 1.25935 | 1.50448 | 1.68543
0 | Ub,bsk3u | 5,16867 | 5.87T193 | 6.79731 | 7.48870
1| 2.67921 | 3.07020 | 3.bbS61 | 3.92986 | L4,20718
2 1.77394 2.0L899 2.31117 2.64607 2.890u1
3 1.09902 1.30390 1.50080 1.75395 1.93967
L 0.L6045 0.59908 0.73688 0.92057 1.05808
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TABLE I1I
QUANTILES OF THE QUASI-RANGCE DENSITY

a =1
P
0.005 0.010 0.025 0.050 0.100 0.500

2 Q 0.01003 | 0,02000 | Q,05000 | 0.,l00Ck | 0.20122 | 1,1L619

0 ke L AR 5 St T g s K S ITIGE Wil W ol i

3 0 0,15027 | 0.213128 | 0.33959 | 0.43555 | 0.70285 | 1.96018

L 0 0.38050 | Q.LBLTS | 0.66685 | 0.85909 | 1.12332 | 2.47699
0.00LLy | 0.00896 | 0.02256 | 0,04554 | 0,09284 | 0.573k6

5 0 0.61465 | 0,T4254 | 0.95728 | 1.17211 | 1.45780 | 2.85266
0.07613 | 0.11172 | 0.1%037 | 0.26149 | 0,.38491 | 1,12388

6 0 0.83209 | 0.97362 | 1.20669 | 1.b43LL4 | 1,73171 | 3.14683
0.22091 | 0.28193 | 0,39321 | 0.51212 | 0.6T743 | 1.52622
0.00267 | 0.00575 | 0.01450 | 0.02932 | 0.05996 | 0.37976

7 ) 1.03410 | 1.17774 | 1.82216 | 1.65722 | 1.96187 | 3.38761

1| 0.38293 | 0.46L42 | 0,60413 | 0.74625 | 0.93504 | 1,84107
2 | 0.05287 | 0.07579 | 0.12234 | 0.17083 | 0,26488 | 0.79123
8 |0 1.20573 | 1.36039 | 1.61054 | 1.65047 | 2.15960 | 3.59110
1 | 0.54697 | 0.64110 | 0.80034 | 0.05622 | 1,15963 | 2.0992L
2 | 0.15572 | 0.19973 | 0.28006 | 0.36673 | 0.4487k0 | 1.112605
3 | 0.C0211 | 0.00423 | 0.01068 | 0.02160 | 0.04L23 | 0.28334
9 | 0 | 1.36572 | 1.52221 | 1.77725 | 2.02043 | 2,33252 | 3.76710
1 | 0.,70230 | 0,80569 | 0.97315 | 1.1L357 | 1.35663 | 2.31730
2 0.28009 | 0,3b052 | 0.4L4S12 | 0.55203 | 0,69479 | 1.38255
3 0.03998 | 0,05737 | 0.09316 | 0,13594 | 0.20188 [ 0.6106k
10 0 1.49910 | 1.66722 | 1.92535 | 2,17261 | 2.48593 | 3.92194
1| 0.8b764 ( 0.95677 | 1.13903 | 1.31120 | 1.53102 | 2.50571
2 | 0,b1212 | 0.48390 | 0.60595 | 0.72609 | 0,88332 | 1,60849
3 | 0.12054 | 0.,15496 | 0.21776 | 0.28582 | 0.38106 | 0.88207
b 0.00167 | 0,00335 | 0.00845 | 0.01710 | 0.03503 { 0.22581
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TABLE III ]

QUANTILES OF THE QUASI-RANGE DENSITY ]

P
0.900 | 0.950 | 0.975 0,990 0,295

- e

2 0 3.27175 | 4,11295 | L,92794 [ 5.9894T | 6.77216

3 0 L.16697 | 5.00322 | 5,81462 | 6.86676 | T.64312

L 0 L.6965T7 | 5.529T70 | 6.33657 | 7.30306 | 8.15586
1.72308 | 2.17995 | 2.62111 | 3.19314 | 3.61311

5 0 5.07275 | 5.90270 | 6.70622 | 7.74876 | 8.51912
2.40290 | 2.b7273 | 3.32165 | 3.859623 | 4.31575

6 0 5.36439 | 6.,19088 | 6.99180 | 8,03133 | £.79966
2.65012 | 3.32395 | 3.7T413 | L.347T5 | 4,T76602
1.17316 | 1.49210 | 1,60047 | 2.20036 | 2.49371

7 0 5.60113 | 6.b4as526 | 7.,22407 { B,26119 | 9.02826

1 3.18536 | 3.66056 | L,11055 | L,68296 | 5,1001b
2 1.71395 | 2.051k6 | 2,37266 | 2.78129 | 3.07033
8 0 5.60083 | 6.62250 | 7.41953 | G.Lslés | 9,220u49
1 3.45L08 | 3.92910 | L.37dkT | W,9LY55 | 4.36568
2 2,09306 | 2,L3334 | 2,7uv3u9 | 3.1753¢ | 3.4733k
3 0.80906 | 1.1356T7 | 1,374k7 | 1.66435 | 1.91177
9 0 5.97160 | 6.79259 | T.56613 | 3.62159 | 9.38Gud
1 3.07Th8 | W,15241 | 4,60109 | 5,1T7104 | 5.506L4
2 | 2.38578 | 2.73751 | 3.06497 | 3.47729 | 3.77511
3 1,33711 | 1.60321 | 1.85610 | 2.17697 | 2.40930
10 0 ©.12258 | 6,9420k | T7,73634 | U.70052 | 9.53081
1 3.50339 | L.3L2T8 | L.,79024 | 5,35765 | S.77002
2 2,63223 | 2,983b6b | 3,31366 | 3.73052 | 4,03501
3 1.66430 { 1.93972 | 2,198k | 2,52363 | 2.75732
L 0.71653 | 0,91741 | 1.11255| 1.36651 | 11,5531k

. ::.”-m.n.-.-..-.-.....lIIIlll.l'...Ill.-l..'l"




2 e Wt o b

i
M
>
'

ditaidGoliiiie

QUANTILES OF THE QUASI-RANGE DENSITY

TABLE III

e R 1 MR U A st T 55 NG B R it S § gt i

a =2
P

BT 0.005 0.010 | 0.025 0.050 0.100 0.500
2 0 0.01336 | 0.02667 | 0.06667 | 0.13337 | 0.26772 | 1.48193
3 0 0.20333 | 0.28564 | 0.bsu2k | 0,0475T7 | 0,93238 | 2.50734
b 0.50879 | 0.6L998 | 0.49053 | 1.1u226 | 1,4G274 | 3.151k0
0.00585 | 0.01170 | 0.02945 | 0.05941 | 0.12096 | 0.73783

0.10274 | 0.1k676 | 0.23661 | 0,3L2L0 | 0.50252 | 1.43883

6 1.11818 | 1.300Lk1 | 1.60341 | 1.49L3L | 2.27022 | 3.97875
0.28977 | 0.37136 | 0.51652 | 0.670863 | 0.88390 | 1.9L767
0.00372 | 0.0074S | 0.0187T | 0.03794 | 0.0775L | 0.u4E703

7 0 1.37959 | 1.56939 | 1.88513 | 2.13369 | 2.56L482 | 4,27413
1 0.50378 | 0.61187 | 0,79431 | 0.97691 | 1.21834 | 2,3LL10

2 0.06891 | 0,09870 | 0.15980 | 0.23236 | 0.34338 { 1.01193
6 0 0.02391 | 0.0L771 | 0.11927 | 0.23854 | 0,47830 | 3.19375
1 0.72115 | 0.8k439 | 1,05052 | 1.2504L | 1.50886 | 2.66761

2 0.20387 | 0.26082 | 0.36499 | 0.47662 | 0.63212 | 1.L2LLO
3 0.00272 | 0,00546 | 0.01376 | 0.02764 | 0.05696 | 0.36266
9 0 0.02525 | 0.0504k | 0.12609 | 0.25216 | 0.50493 | 3.37813
1 0.,01676 | 0.03332 | 0.08329 | 0.1665T7 | 0.33603 | 2.L42899
2 0.36761 | o.Lu620 | 0.58122 | 0.71876 | 0.9012L | 1.76219
3 0.05181 | 0,07L31 | 0,12057 | 0.17576 | 0.26060 [ 0.780LO

10 0 0.02654 | 0,05303 | 0.13262 | 0.26519 | 0.53041 | 3.54876
1 0,01752 | 0.03496 { 0.08T4l | 0.17478 | 0.35075 | 2.59041
2 0.01426 | 0.02803 | 0.07006 | 0.14066 | 0.29397 | 1.9492k

3 0.15658 | 0.20113 { 0.2824L0 | 0.37020 | 0.49250 | 1.12607

b 0.00215 | 0.00k30 | 0.01086 | 0.02197{ 0.04500 28867
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TABLE III

QUANTILES QF THE QUASI-RANGE DENSITY

a

2

P
n "I 0.900 0.550 | 0.975 0.990 0.995
2 0 L,01037 | b4.96855 | 5.,85349 | 7.05906 | T.91TuL2
3 0 5.07972 | 6.02017 | 6.92124 | 8,07669 | B.92230
L 5.T1182 | 6.6L201 | 7.53318 | S.67TL44 | 9.51617
2.15116 | 2.6939% | 3.21071 | 3.67134 | k.35110
5 0 6.15985 | 7.06213 | 7.9664k | 9,10309 | 9.93718
1 2.98259 | 3.53200 | 4,05055 | 4.70579 | 5.17986
6 0 G.50574 | T7.L2170 | £.30084 | 9.L43181 | 10.2625
1 3.53763 | L.0TT10 | 4.592%% | 5.24k297 | 5,71319
2 1.473%6 | 1.86055 | 2.220¢3 | 2.70262 | 3.,0u536
7 0 6. 78563 | T.60TLL | §.57245 | 9.69097 | 10.5269
1 3.93606 | L,L8300 | L,99%51 | 5.6u059 | 6,10667
2 2.1L266 | 2.54580 | 2.,92%510 | 3.Lo2b1 | 3,74659
8 0 L,79530 | 5.01436 | 5.13140 | %.20337 | 5.22781
1 b,26202 | b,80662 | 5.31629 | 5.9574E | 6.L2078
2 2.61016 | 3.01854 | 3.39975 | 3.37682 | 4.219&4
3 1,12121 | 1.42296 | 1.71239 | 2.08399 | 2.35403
9 0 L,97994 | 5.,196L7 | 5.,31130 | 5.3¢197 | 5.LOS9L
1 3.60093 | 3,80386 | 3,91344 | 3.0u470 | L4,00965
2 2.97h71 | 3.38592 | 3.76904 | L.250k9 | L,60129
3 1.67T762 | 1.99891 | 2.30077 | 2.0T8hb | 2.,94761
10 ) S.1494T | 5.36386 | 5.47697 | 5.54731 | 5.57095
1 3.7Tho02 | 3.92059 | L.029L41 | 4,00351 | 4.11570
2 3.08666 | 3.30293 | 3.59%00 | 3.76396 | 3.8336k
3 2.06667 | 2.41903 | 2.7306L4 | 3.12633 | 3,42082
L 0,90482 | 1,15297 | 1.39213 | 1.70096 | 1,92703
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COMPARISONS WITH GHOUAL'S DATA

Data from Ghosal (Exncnential)

TABLE IV

R e haleatuii

n=9 n 10
9 1]

r v t;, Y1 vz W ¥, Yx Yz
2,0633 | 1.4236 | 1.3831 | 3.1940 | 2.6290 | 1.,5398 | 1.2525 { 2.7723
0.8333 | 0.3611 | 1.4931 | 3.L210 | 1,7179 | 0.5274 | 1.0189 | 1.8508

- - - - 1.0009 | 0,266 | 1.0103 | 2.,0234
Data fror this paper (& = 0)
n 5 n=1.70

2l ! " "2 a Y2 ¢! A
2.0633 | 1.4236 | 1.3866 | 3.193T7 | 2.8290 | 1.5398 | 1.2525 | 2.7381
0.6333 | 0,3611 | 1,4934 | 3.LL38 | 1.7179 | 0.5274 | 1.0189 | 1.76k0

- - - - 1.0029 | 0,2618 | 1.0186 | 1.6669

P

!
|
|
i




TABLE V

COMPARISONS WITH GUPTA'S DATA

Absolute Deviations

n r a =0 a =1 a=2
2 0 - - -
3 0 - - -

L - 0,00001 0.,00001
5 0 - - -
1 - 0.00001 -
6 0 - - -

1 - J,00001 0,00001

2 - - 0.00001

T Q - - 0.00001

1 - - 0.,00001
2 - - -

6 0 - 0.00001 0.0C002

1 - - 0.00003

2 - ., 00002 0. 00002

3 - 0,00001 0.00003

9 o} - 0,00001 0.00002

1 - 0.00002 0,00003

2 - 0,00004 0.00006

3 - 0. 00001 0.,00004

10 0 - 0.00001 0.00004

1. 0,00001 0. 00003 0.00018

2 0,00002 0.00001 0.,00023

3 - 0.00007 0.00079

L - 0.,00012 0.00028




TABLE VI

OF ACCURACY IN HIGHER MOMLNTS

uy(n,r,a)
i Primary | Alternate
Program Program

1 1.69910 1.69922
100 2 | 3,376u8 | 3.37658
1oy 3| 1.61506 | T7.67516
2 | 4| 19.6406 | 19.6LoT

1 | 2.1849k | 2,14516

=101 5| 5.31508 | 5.31542
3 14,8951 14,3952
b | u6,4916 | L4E.4oL5




Appendix B

ON ESTIMATING THE SCALE PARAMETER OF THE

RAYLEIGH DISTRIBUTION FROM DOUBLY CENSORED SAMPLES
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This paper is concerned with estimating the scale parameter of the Rayleigh
distribution from censored samples. The Rayleigh distribution arises as a con-
; sequence of finding the resultant amplitude of several coplanar random amplitude
| vectors which are normally distributed (Siddiqui [1962]). Therefore it is useful
in the analysis of acoustic data or other data obtained from measurements of
amplitudes of electromagnetic waves received through a scattering medium.
This distribution is also useful in communication engineering. Since for
many reasons the samples could be censored, it is important to consider the
analysis of such data.

The Rayleigh distribution is characterized by the probability density func-
tion (p.d.f.)

f(x) =

{(Zx/K)exp{—leK}, 0<x<o
(1.1)

0 » ¢lsewhere
for positive values of K, with expectation vKn/2 and variance K(1-m/4). To é
estimate the parameter K, we employ the methods used by Tiku [1967, 1967(a),
1968, 1968(a), 1968(b)] for the censored samples from normal, exponential,
logistic, log-normal distributions and progressively censored samples from
normal distribution respectively, as described below. ‘
The p.d.f. given in (1,1) can be reduced to
22 exp(-zz) sy 0 ¢ 2<¢c =
£,(2) = { (1.2)
0 ,» elsewhere,

where x = 2 //K

Let g(z) = fz(z) /Fz(z), where Fz(z) is the probability integral of fz(z)
given in (1.2). Then, over a small interval, say a < x < b, the linear i
approximation a+ B8 z to g(z) is a reasonable one, where a and 8 are constants

such that
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8 = {g(b) - g(a)}/(b-a)

a= g(a) -a8 .
Some numerical comparison between g(z) and a + Bz for various sample sizes
are given in the example. The substitution a + Bz for g(z) in the likelihood
equation results in a solution (KC) which is easy to compute and which is
asymptotically equivalent to the maximum likelihood estimator (MLE) accord-
ing to Tiku's results (1967, 1967(a), 1968, 1968(a), 1968(b)]. To obtain
greater accuracy, i.e., to get an approximation which is practically same
as an actual MLE, it is suggested to try a linear approximation once again
instead of using expensive and time consuming iteration procedures,

In the remainder of this paper the maximum likelihood equation for

finding K. will be set up and solved (for a doubley censored sample),

C
expressions for the bias and variance of KC will be developed, a numerical

example will be given and an improved estimator of KC (namely Ké) will be made.

Derivation of the Estimator Kc

Let Xl, Xz, ceny xn be a random sample from the Rayleigh distribution
with the smallest T =9 n and the largest T, = q,n observations being cen-
sored, where 9 and q, are fixed and decided in advance (Type II censoring).
The remaining sample values, arranged in order of magnitude, are

Y s Y P § , Y .
r1¢1 r1+2 n-rz-l n-r2

i.e. forming a doubly censored Rayleigh sample of size n - T T, The

probability density function of this censored sample (see. for example

Saw [1961]) is
n-r

-r - n-r _ r
-ll'!—(Z/ul‘lan 1 1‘2 [ n 2 zi]exp %- b 2 zi% . 31"2 (l‘gl-Fz(zn_:z)f 2(2.1)
(zrl+1)

rr,! fmr +1 fer +1

vhere z = yil/i.




Taking logarithms of (2.1) and denoting it by L yields:

n-r
2
]
L = log ;J%%—r} + (n—rl-rz) log (2/vK) * Z log z,
1'7°2 1=r1+1
n-r (2.2)
- ) ? 22+ 1 {log F (2. )} -1, 2°
i=rl+1 i 1 Z r1+1 2 n-r,

Taking the partial derivative of L with respect to K and simplifying

2
aL [r1+r2-n ] 1 nirz 5 [Iizrl*l] fz(zr1+1) rZzn-r2
s 1.1 2% . : + .(2.3)
3K K K er)+1 2K Fz(zr1+1) K

Setting %%- equal to zero in equation (2.3) and solving for K would give the
ordinary maximum likelihood estimator. However, this is a complicated nonlinear
equation because of the term 1
2z exp (-22 ) |
rl*l r1+l 1
o) fZ(zr1+1)/FZ(zrl¢1) = R (2.4)

-2
1- exp ( zr1+1)

g (2
YA rl

which is implicit in K, thus precluding any exact solution to (2.3). Hence an
i iteration procedure seems.to be the only solution to this problem, but it is

5

not only time-consuming and expensive for computation but also sometimes diffi-
cult to converge as is the case with the Rayleigh distribution*. Hence instead

of an iteration procedure, we are proposing that g(zr +1) be replaced by a linear
1 .

approximation

gz(zrl*l) =q+f Zr1+1' (2.5)

Consider now

*We experienced divergences even with the actual population parameter as an ini-
tial guess when censoring is a little bit heavy.
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2
rlzr1+1 rZZn-r2
= o+ Bzrl+1 + — K (2.6)

In this equation a and 8 are such that

W
1]

= {gz(hz) - gz(hl)} /(hz‘hl) and
(2.7)
a = gz(hl) - hl B
where g is given by (2.4) and the interval (hl'hz) is chosen in such a way that

Zh 4 is sufficiently close to hl or hz. But a difficulty arises, because we
1

don't know the exact point of L since it depends on the parameter K we are
1
going to estimate. This difficulty can be eliminated, for sufficiently large

n-T,-T,, by choosing h1 and h2 so that

= 1 -
FZ(hl) s ql - n q1(1 ql)

Fy(h,) = q ‘& q,(1-q,) .

The reasoning behind this choice of interval end points is that it is logical

(2.8)

to think of 2,1 38 an estimate of the point below which loo-q1 percents of
- "1

the population represented by fz(:)lies. Also, the secant between hlandh2 has

smaller maximum error than the tangent at h or than the secant through hl' and

hz' if one Trecalls that the probability is small that the Zr 1 will fall out-

1
side the interval hl' and hz', where Fz(h) = q

l!
1
Fph") = qp - SyEa (eq). .  (2.9)
'y . ‘/.1. -
and Fz(h2 ) qQ ¢ 3 - ql(l ql) .

(See figure 1).
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fig. 1.

Possible range of Zr1+1

From (2.8) it can be seen that-as n become large, Fz(hl) approaches 9

from the left at the same rate that Fz(hz) approaches qy from the right. Thus
the interval (hl,hz) shrinks to a single point, and a and 8 can be obtained
by evaluating the derivative of gz(z) at the point h, and in this case all 3
lines in the figure coincide. The degree of accuracy of the linear approxi-
mation is related to the width of the interval: The smaller the width of
(hl’hz)‘ the smaller the error of the approximation which is obvious from the
figure. But one disadvantage is that the decrease of interval width hz-h1 is

rather slow as n increases though the approximation was recasonably good when

n is as small as 10 (see §4). Hence it is suggested in §5 that a possible

acceleration of the approximation be used.

1
Equation (2.6) can now be solved analytically by satting %%— = 0 and

carrying out the algebra. After substitution of ¥y = K 2 and some simplifi-
cation, it follows that

L (Gk+8-p/%)= 0, (2.10)
2K .

where G = 2(r1+r2-n)

Bs=2 ;rz y2 +2r y2 -r y2 £
- +
1-r1 1 i 2'n 1 3} 1l ry 1

D= rlyr1+1°'
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In order to solve equation (2.10) for & > O,

set T = /X and revwrite it as a quadratic equation in T as
GTZ - DT +B =0, (2.1)

Since ﬁf is positive we take the positive root of the equation (2,11) as

D - /62-463

2G

T, 1.e.

T=

Here note that G is negative and B and D are positive. Hence the estimator

Kh is the square of T as

K, = g(nz-zcn) - D/D2-4GBi/202 (2.12)

Properties of the Estimator K.

The estimator Kc is same as an MLE except that a linear approximation
was used to solve the likelihood equation. It is expected that the properties
of Kc should be similar to those of an MLE. While calculation of the expected
value of KC from equation (2.12) would be extremely difficult, we can discuss
the approximate conditional bias of Kc in the asymtotic case. Following Tiku
{1967, p. 160], we have the approximate conditional bias given by .

B, = EG )/R2(K)
where (3.1)

R = ek |

3 K°

for large values of n - T, - T,

The bias B. can be calculated from the following equation:

1
T +r,-n n-r,
aL! 127 2
et - [.___K__] « (1/K) i=§' ‘la(zi) - (r,0/2K) E(Zrlq)
: 1
2 2
S BB )+ (10 B ). (3.2)

Expected values of the order statistics from the Rayleigh distribution are

given by (see Sarhan and Greenberg [1962])
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n! L PO RSN /7
By = DD JZO RIS [ 3/2]

2(n-i+1+J)
and
i-1 .
2 n! i-1 J 1
) TnrE D! JZO( $)D [(n-i»,lu)z} -3

Differentiating (2.6) with respect to K and taking expectations and inserting

the minus sign gives

2
R2(K) = -E (92—“)
27K
n-r
r1+r2-n 2 2 2 3r1a
=7 1 EED-— E(Z L)
K K i=r1+l 4K 1
T 2r
18 2 2 2
- —— E(Z ) + E{Z ) (3.4)
K2 r1+1 K2 ( n-r2

where expectations are also given by (3.3).
Also theasymptotic variance of Kc can be obtained from (3.4) by use of the

asymptotic property (See Kendall and Stuart [1961]):
1

2

R™(K)

Var(Kc) = €3.5)
As Tiku [1967] justified, since KC is an asymptotic MLE, its asymptotic properties,
in no doubt, are the same as MLE. We can show that numerically, though they are

complex, the bias B, in (3.1) would be zero when n is large. Furthermore, the

1
attractiveness of the estimator is enhanced by the fact that it can be computed
easily without worrying about divergence, without having to resort to iterations
or procedures requiring expectations of order statistics (see Lloyd [1952]).

Table 1 below shows the values of B1 and Var(Kc) for various censoring when the

sample size is 10 and K = 3,
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Table 1. Asymptotic bias and variance of the estimator KC for n = 10 with

proportion 9 censorced from below and 4, above.

Q, a, ) (2)
1 .2 0.019 0.469
.1 .4 - .092 .160
1 .6 - .087 .203
.1 .7 - .055 .262
.2 2 - .009 .687
.2 .4 - .167 .265
.2 .6 - 173 .363
.3 .4 - .217 .279
.3 .5 - .242 .403
.4 ) .4 - .055 .170

(1) = Bias/o

(2) = Var(Kc)/cz, where

2

0“ = variance of the Rayleigh distr. = K[l1-w/4)

Numerical Example
Using .the closed-form cumulative distribution function F(x) for the Rayleigh
distribution and thc probability integral transformation, a random sample of 100

observations was gencrated from the Rayleigh distribution with the population

parameter K = 3.000. The sample of size 10 and 30 were chosen from the original

oample of size 100.

The following anulysis of data is given.

) .

‘. . . . .
1 Linear approximation a +8 zr .l to g(..l_l’1

The following table showsthelincarapproximationu+82r + O g(zr *1) for

various sample sizes with proportions qy and 4, censored from the left and the

right, respectively, 66




Table 2.

Here, Ke is an actual MLE by iteration.

Table 3.

n = 10

n

9,
1
.2

30

h1 h2

.071 .465
.276 .628
.410 .767
.530 .899

13

R hy
215 .410
.368  .564
494 695
609  .820

gy

T, +l
7.09

6.33
6.33
4.16
3.67
3.67
4.16
3.67
3.67

3.66

T
8.65
7.78
7.20
4.56
4.04
3.7
4.06
3.58

3.27

2,83

1)

gy, ,/7K)

e

@+ By, /KD
15.65
13.82
13.82
4.98
4.39
4.39
4.28
3.94
3.94
3.49

3.22

a B(yrl,II//E:
8.84
8.27
7.83
4.69
4.24
3.90
3.89
3.58

3.34

2.7
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Table 4. n = 100

q, q, hl h2 g(z) a+Bz
.1 .1 . 269 .373 7.52 7.41
1 2 7.10 7.11
.1 .3 7.22 7.20
.2 .1 .417 .523 4.13 4.17
2 2 3.87 3.92
.2 .3 3.94 3.99
.3 .1 .541 .651 2.95 2.97
.3 .2 2.74 2.76
.3 .3 2.80 2.83
.4 .1 .657 772 2.20 2.21
.4 .2 2.02 2.03

It can be seen from our earlier discussion, the approximation is better when
n is large or hz-h1 is small but when the sample size is as small as 10, the

approximation is not good; hence an improvement is suggested in §5.
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4.2 Comparison With an actual MLE by iteration.

Table 5 shows comparison between Kc and an MLE by iterations* for n = 30.

Table 5.
Y
.1

.1

.2

.4

.4

.5

2.934
2.380
2.054
1.887
1.915
2.938
2.390
2.071
1.914
1.946
2.985
2.411
2.076
1.909
1.942
3.003
2.432
2.108
1.951
1.991

Error = IKC-MLEI/MLE :

*Iterated approximation is obtained by Newton-Raphson's method (See, for

example, Dahlquist [1}]).

MLE
2.941
2.399
2,078
1.917
1.951
2.956
2.417
2.097
1.940
1.978

2.951
2.410
2,090
1.931
1.967
2.990
2,452
2.132
1.981
2.029

Error
.002
.007
.011
.015
018
.011
.012
.013

.0l6

.015

.011
.000
.006
.011
.012
.004
.007
.012
.015
.018

Eppy




Improvement by Linear Approximation Twice
Sometimes a greater accuracy for an approximation of an MLE is needed and

as it was seen in 84, our estimator Kc is not sufficient for that purpose
when the sample size is smaller than 30. To achieve g;eater accuracy, one
solution is to use Kc as an initial guess and try an iteration procedure,
which will give faster convergence in every case. But considering the compu-
tation time involved in iteration, it is suggested to try one more linear
approximation using K. as an estimator of K, which resulted in an estimator
Kc' and showed almost the same accuracy (agreed'with an actual MLE by itera-
tion to two decimal digits when n = 10) as an MLE by iteratiomn. The second
linear approximation procedure is as follows: Since an estimator KC of an

actual MLE K, is available, it is reasonable to think y_ +1//E: lies closer

to le,l//fz- Hence a tangent linc at yr1+1//f: can be used as an approxi-
mation of g(z) in the neighborhood of y_ +1//§ (see Fig. 2).
1
Fig. 2.
Py Yr1+1/"'§ ’
P, leq/‘/re
1

i.e. néw B = g'(yr1+1/flz:-) (5.1)

aﬂd a = g(}’rl’l/',lc) - (yrl*l//ic-) ¢ B ’

and computing Kc by the same formula (2.13) as before will give a new estimator Ké.




The following tables show the K. and MLE by iteration for sample size
n=10and n = 30, K = 3,

Table 6. n = 10

q a, K. MLE .Error
.1 .1 2.5133  2.5123 .0003
.1 .2 2.0379  2.0369 .0004
.1 .3 .8669 .8669 .0000
.1 .4 .9576 .9575 .0000
.1 .S .9576 .9575 .0000
.2 .1 2.5337  2.5335 .0000
.2 .2 2.0605  2.0603 .0001
.2 .3 2.0605  2.0603 .0001
.2 .4 .8947 .8944 .0004
.2 .5 .9915 .9912 ° .0002
.3 .1 2.5335  2.5335 .0000
.3 2 2.0603  2.0603 .0000
.3 .3 2.0603  2.0603 .0000
.3 .4 .8943 8943 .0000
.3 .5 9912  ©.9912 .0000
.4 .1 2.4952  2.4952 .0000
.4 .2 2.0163  2.0163 .0000
.4 .3 2.0163  2.0163 .0000
4 4 .8265  .8264 .0001

.4 .5 9117 9113 .0004




Table 7. n = 30, K= 3.

9
.1

.4

4

Error = (K!-MLE|/MLE) (10%)

9,
.1

'Y
c
2.94108
2.39997
2.07875
1.91790
1.95178
2,95687
2.41740
2.09744
1.94050
1.97899
2,95151
2.41096
2.09010
1.93130
1.96801
2.99032
2.45209
2.13266
1.98169
2.02922

2.

2’

2.

1.

1.

2.

MLE

94108
39997
07874
91788
95175

95687

.41738
.09742
.94047
.97894
.95148
.41096
.09010
.93127
.96796
.99031
.45207
.13261

.98160

.02906

Error




Table 8 and 9 show Ké and MLE by iteration whenK = 10.000.

Table 8. n = 10, X = 10.0

!
1
1
.1
.1

.1

7} X

.1 8.37781
.2 6.79320
.3 6.79320
4 2.88993
.5 3.19218
1 8.44567
2 6.86851
.3 6.86851
.4 2.98254
.5 3.30493
1 B.44497
.2 6.86789
.3 6.86789
4 2.98122
.5 3.30424
.1 8.31778
.2 6.72130
.3 6.72130
4 2.75501
.5 3.03910

Error = |R -MLE[/MLE

MLE
8.37461
6.78998
6.78998
2.88993
3.19195
8.44496
6.86776
6.86776
2.98119
3.30404
8.44496
6.86776
6.86776
2.98119
3.30404
8.31747
6.72129
6.72129
2.75471

3.03787

Error

.00038
.00047
.00047
.00000
. 00007
.00009
.00011
.00011
.00045
.00027
.00000
,00002
.00002
.00001
. 00006
.00005
.00000
.00000
.00011

.00041
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Table 9. n = 30, K = 10.000

»? 4 q, k; MLE Error
; .1 .1 9.80361 9.80361 . 00000
g .1 .2 7.99990 7.99989 . 00000 -
? .1 .3 6.92917 6.92914 .00000
.1 .4 6.39299 6.39293 .00001
.1 .5 6.50595 6.50583 .00002 ;
.2 .1 9.85625 9.85623 .00000 §
.2 .2 8.05799 8.05793 .00001 |
.2 .3 6.99148 6.99141 .00001
.2 4  6.46834 6.46824 .00002
o2 .5  6.59664 6.59646 .00003
.3 .1 9.83837 9.83827 .00001
.3 «+2 8.03654 8.03654 .00000
.3 .3 6.96701 6.96699 . 00000
.3 .4 6.43766 6.43756 .00001
.3 .5 6.56002 6.55988 .00002
b 1 9.96773 9.96770 .00000
.4 .2 8.17563 8.17356 .00001
:4 .3 7.10888 7.10871 .00002 é
4 4 6.60563 6.60535 .00004 .
N 5 6.76406 6.76354 .00008

Error = (|K.-MLE|/MLE)




Conclusion; The approximation RZ to an MLE which was proposed in this sec-
tion has some desirable advantages over the actual iteration procedure Con-
sidering the fact that the iteration procedure requires several steps, Ké is

clearly time saving because the procedure suggested requires the time equiva-

lent to that which is needed for a single iterationm,

The iteration procedure depends heavily on the initial guess and as such

it is the main reason we do not want to compare the computing times required

by our method and the iteration procedure. If the initial guess is poor the

computing time required by the iteration will be lengthened. In fact, we
experienced several divergence of the Newton-Raphson's method for our simple
example though the initial guess was chosen as 2.0 when the actual parameter

was 3. Ké is computed using the previously obtained Kc and hence it has an
advantage.

As regards the accuracy of the procedure suggested, we tried some more
simulated data obtained from the distribution with different parameters and

concluded that the relative error to the iterated estimate is negligible in

most cases. (Less than 10-4 for the sample of size 10 or more). Hence we

recommend to use Ké when the time saving is a crucial matter or when there is

a difficulty of setting the initial guess.

At present we are investigating the possibility cf extending this new

procedure to the results given in the series of papers by Tiku.




REFERENCES

Agrawal [72]: V. D. Agrawal and P. Agrawal, "An Automatic Test Generation
for ILLIAC IV Logic Boards', IEEE Trans. on Comp., Sept.

Agrawal [75a]: P. Agrawal and V. D. Agrawal, "On Improving the Efficiency
of Monte Carlo Test Generation,'" 1975 Internation Symposium on Fault-

Tolerant Computing, June,

Agrawal {75b]: P. Agrawal and V. D. Agrawal, "Probabilistic Analysis of
Random Test Generation Method for Irredundant Combinational Logic Net-

works", IEEE Trans. on Comp., July.

Armstrong [66)}: D. B. Armstrong, "On Finding a Nearly Minimal Set of Fault
Detection Tests for Combinational Logic Nets', IEEE Trans. of Electronic

Comp., Feb.

Basu [64]: A. P. Basu, "Estimates of Reliability for some Distributions Use-
ful in Life Testing', Technometrics, Vol. 6, pp. 215-19.

Benson {49]: R. Benson, "A Note on the Estimation of Mean and Deviation
from Quantiles", J. Royal Stat. Soc., Ser. B, Vol II, pp. 91-100.

Bouricious [71]: W. G. Bouricious, W. C. Carter, D. Jessep, P. R. Schneider
and A. B. Wadia, "Reliability Modelling of Fault-Tolerant Computers', IEEE

Trans. of Comp., Nov.

Breuen [76]: M. A. Breuen and A. D. Friedman, Diopnosis and Reliable Design
of Digital Systems, Computer Science Press.

Caldwell (53]: J. H. Caldwell, "The Distribution of Quasi~Ranges in Samples
from a Normal Population', Ann. Math. Stat., Vol. 24, pp. 603-13.

Case {76]: G. R. Case, "A Statistical Method for Test Sequence Evaluation",
The Proc. of 1976 Design Automation Conference.

Chu [57}: J. T. Chu, "Some Uses of Quasi-Ranges”, Ann. Math. Stat., Vol. 28,
pp. 173-80.

Cox [53]: D. R. Cox, "Some Simple Approximate Tests for Poisson Variates",
Biometrika, Vol. 40, pp. 354-60.

Dahlquist [74]: G. Dahlquist, and A. Bj8rk, Numerical Methods, Prentice-Hall,
Inc., New Jersey, 218-251.

Drenick [60]: R. F. Dremick, "The Failure Law of Complex Equipment", J. Soc.
Indust. Appl. Math, Vol. 8, No. 4, pp. 680-~90.

Epstein [53]: B. Epstein, and M. Sobel, '"Life Testing", JASA, Vol. 48, pp 486-502.

Epstein [54]: B. Epstein and M. Sobel, "Some Theorems Relevant to Life Test~
ing From an Exponential Distribution", AMS, Vol. 25, pp. 375-81.




Fike [72}: John L. Fike, "Heunistic and Adaptive Techniques for Diagnostic
Test Generation", Ph.D. Thesis, S.M.U.

Friedman (71]: A. D. Friedman and P. Menon, Fault Detection in Digital Cir-
cuits, Prentice-Hall, Inc.

Chosal [57]: A. Ghosal, "The Distribution of Quasi-Ranges in Samples from
Rectangular and Exponential Distributions', J. Actuarial Student's
Ingtitute, Vol. 14, pp. 94~101.

Gupta [60]: S. S. Gupta, "Order Statistics from the Gamma Distributiomn",
. Technometrics, Vol. 2, pp. 243-62,

Harter [59]: H. L. Harter, "The Use of Sample Quasi-Ranges in Estimating
Population Standard Deviation'", Ann. Math. Stat., Vol. 30, pp. 980-99.

Kasouf [78]: G. Xasouf and S. Mercurio, "Evaluation of LSI/MSI Reliability
Models", Proc. of 1978 Annual Reliability and Maintainability Symposium.

Kendall [61]: M. G. Kendall and A. Stuart, The Advanced Theory of Statistics
Vol. 2, Hafner Publishing Co., New York, 42-44.

Lloyd [52]: E. H. Lloyd, "Least Squares Estimation of Location and Scale
Parameters Using Order Statistics'", Biometrika 39, 88-95.

Mann ([75]: N. R, Mann, R. E. Schafer and N. D. Singpurwala, Methods for
Statistical Analysis of Reliability and Life Data.

Mathur [71]: F. P. Mathur, "On Reliability Modelling and Analysis of Ultra
Reliable Fault-Tolerant Digital Systems'', IEEE Trans. on Comp., Nov.

Moreno [72]: V. Moreno, "A Logic Test Generation System Using a Parallel
Simulaiton", Dept. of Comp. Sci., Univ. of Illinois, Urbana, ILLIAC
Document 243,

Mosteller [46]: Frederick Mosteller, '"On Some Useful Inefficient Statistics",
" Ana. Math, Stat., Vol. 17, pp. 377-408.

Parker [75a]: K. P. Parker, "Adaptive Random Test Generation', Tech note Nc.
73, Digital Systems Lab., Stanford Univ. Oct.

Parker [75b]: K. P. rarker, and E. J. McCluskey, "Production Treatment of
General Combinational Networks", IEEE Trans. on Comp., June.

Parker [75¢]: K. P. Parker and E. J. McCluskey, "Analysis of Logic Circuits
with Faults Using Input Signal Probabilities", IEEE Trans. on Comp., May.

earson [20]: K. Pearson, "On the Probable Errors of Frequency Constants,
Part I1I", Biometrika, Vol. 12, pp. 113-32.

-=e ott {74]: P, Prescott, ''Variances and Covariances of Order Statistics
‘-~ wm the Gamma Distribution", Biometrika, Vol 61, pp. 607-13.




Pugh [63]: E. L. Pugh, "The Best Estimate of Reliability in the Exponential
Case", J. of 0.R.S.A., Vol. 11, pp. 56-61.

Rider [59]: P. R. Rider, "Quasi-Ranges of Samples from an Exponential Popu-
laiton", Ann. Math. Stat., Vol. 30, pp. 252-54.

Roth [66]: J. P. Roth, "Diagnosis of Automata Failures: A Calculus and a
Method", IBM Journal of Research and Development, Vol. 10, July.

e o ki vt 54 G L. il il

Sarhan [62]: A. E. Sarhan, and B. G. Greenberg, Editors, Contributioas to
Order Statistics, John Wiley and Sons, Inc. New York, 12-27.

Saw [61]: J. G. Saw, "Estimation of Normal Population Parameters Given a
Type Censored Sample", Biometrika 48, 367-77.

Schnurmann [75]: H. D. Schnurmann, E. Lindbloom and R. C. Carpenter, 'The
Weighted Random Test Pattern Generator', IEEE Trans. on Comp., July.

Sellers [68]: F. F. Sellers, M. Y. Hsiao and L. W. Bearson, "Analysing
Errors with the Bollean Difference'", IEEE Trans. on Comp., July.

Shedlesky ([77]: J. J. Shedlesky, '"Random Testing: Practicality vs. Verified
Effectiveness', The Seventh International Conference on Fault-Tolerant
Computing, June.

Siddiqui [62]: M. M. Siddiqui, "Some Problems Connected with Rayleigh Dis-
tributions", Journal of Research of the National Bureau of Standards 660,
167-174.

Su [74]: Stephen Y. H. Su, "Logic Design and Recent Developments, Part 5:
Fault Diagnosis in Digital Networks', Computer Design, Jan.

Tees [71]: W. Tees, '"Predicting Failure Rates of Yield~Enhanced LSI", Com~
puter Design, Feb.

Tiku [67]: M. L. Tiku, "Estimating the Mean and Standard Deviation from a
Censored Normal Sample', Biometrika 54, 155-165.

Tiku [67a]: M, L. Tiku, "A Note on Estimating the Location and Scale Para-
meters of the Exponential Distribution from a Censored Sample", The
Australian Journmal of Statistics 9, 49-54.

Tiku [68): M. L. Tiku, "Estimating the Parameters of Normal and Logistic

Distributions from Censored Samples', The Australian Journal of Statistics
10, 64~74.

Tiku [68a]: M. L. Tiku, "Estimating the Parameters of Log-Normal Distribu-
tion from Censored Samples', Journal of American Statistical Association 63,
134-1440.

Tiku [68b]: M, L. Tiku, "Estimating the Mean and Standard Deviation from Pro-
gressively Censored Normal Samples', Journal of Indian Argricultural Sta-
tistics 20, 20-25.




Vodovoz [75]: Erwin Vodovoz, "Testing Microprocessors is a Gamble'",
Electronic Products Magazine, Nov.

Watkins [70]: W. B. Watkins, "Introducing Companies to Automated Testing",
Electronic Packaging and Production, Oct.




